
Ecology, 90(7), 2009, pp. 1958–1970
� 2009 by the Ecological Society of America

The temporal dynamics of resource use by frugivorous birds:
a network approach

JOFRE CARNICER,1,2,4 PEDRO JORDANO,1 AND CARLOS J. MELIÁN
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Abstract. Ecological network patterns are influenced by diverse processes that operate at
different temporal rates. Here we analyzed whether the coupled effect of local abundance
variation, seasonally phenotypic plastic responses, and species evolutionary adaptations might
act in concert to shape network patterns. We studied the temporal variation in three
interaction properties of bird species (number of interactions per species, interaction strength,
and interaction asymmetry) in a temporal sequence of 28 plant–frugivore interaction networks
spanning two years in a Mediterranean shrubland community. Three main hypotheses dealing
with the temporal variation of network properties were tested, examining the effects of
abundance, switching behavior between alternative food resources, and morphological traits
in determining consumer interaction patterns. Our results demonstrate that temporal variation
in consumer interaction patterns is explained by short-term variation in resource and bird
abundances and seasonal dietary switches between alternative resources (fleshy fruits and
insects). Moreover, differences in beak morphology are associated with differences in
switching behavior between resources, suggesting an important role of foraging adaptations in
determining network patterns. We argue that beak shape adaptations might determine
generalist and specialist feeding behaviors and thus the positions of consumer species within
the network. Finally, we provide a preliminary framework to interpret phylogenetic signal in
plant–animal networks. Indeed, we show that the strength of the phylogenetic signal in
networks depends on the relative importance of abundance, behavioral, and morphological
variables. We show that these variables strongly differ in their phylogenetic signal.
Consequently, we suggest that moderate and significant phylogenetic effects should be
commonly observed in networks of species interactions.

Key words: abundance; asymmetry; frugivorous birds; generalist vs. specialist; interaction network;
Mediterranean shrubland; morphological traits; phylogeny; resource pulse; switching behavior.

INTRODUCTION

Ecological communities are complex and dynamic

entities, composed of temporally variable populations

that interact in very diverse ways (e.g., competition,

predation, herbivory, dispersal, pollination, and para-

sitism, among others), causing continuous changes in the

architecture of energy and matter fluxes over space and

time. Such overwhelming complexity can be visualized

and analyzed by representing communities as networks,

in which basically species are represented as nodes and

energy fluxes among species are represented as links

(Elton 1927, Lindemann 1942, Cohen et al. 1990).

Network approaches have a long tradition in ecological

research (Pimm 1982, Cohen et al. 1990, Polis and

Winemiller 1996) and have provided an appealing way

to visualize and synthesize the structure of ecological

interactions (Guimerà and Amaral 2005, Olesen et al.

2007, Clauset et al. 2008, Rooney et al. 2008), to study

their emergent properties (Bascompte et al. 2003,

Jordano et al. 2003), and to analyze the stability and

robustness of communities (May 1973, McCann 2000,

Neutel et al. 2007, Rezende et al. 2007, Allesina and

Pascual 2008).

However, network approaches have been hampered

by the lack of both spatially and temporal explicit

analyses (Winemiller 1990). Fortunately, an increasing

number of studies are progressively filling these gaps by

providing both improved spatially explicit approaches

(Holt 2002, McCann et al. 2005, Rooney et al. 2008) and

empirically exhaustive descriptions of the temporal

dynamics of networks (Winemiller 1990, Neutel et al.

2007, Alarcón et al. 2008, Olesen et al. 2008, Owen-

Smith and Mills 2008). Similarly, another unsolved

challenge is to identify and quantitatively assess the

relative importance of the diverse ecological and

evolutionary processes that ultimately shape network
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structures (Jordano et al. 2003, Cattin et al. 2004, Owen-

Smith and Mills 2008, Rooney et al. 2008). Indeed, most

ecological networks share some invariant structural

properties, but the relative importance of the evolution-

ary and ecological processes that mold these emergent

patterns is usually not well understood. For instance,

ecological networks are characterized by a low number

of strong interactions and a much greater number of

weak interactions (Paine 1992, McCann et al. 1998).

Interactions tend to be asymmetric, in both the number

of links per species and the strength of the reciprocal

effects (Jordano 1987b, Jordano et al. 2003, Vázquez and

Aizen 2004, Bascompte et al. 2006). More generally,

networks are characterized by having most interactions

concentrated in few species that then exert a strong

influence on other species (Jordano 1987b, Bascompte et

al. 2003). However, despite the importance of the issue,

the underlying mechanisms that generate such asymmet-

ric relationships in the number and strength of interac-

tions between species in ecological networks are yet

unresolved (Thompson 2005, Jordano et al. 2006, Stang

et al. 2006, Bascompte et al. 2007, Vázquez et al. 2007).

Network patterns are the result of a diverse array of

ecological and evolutionary processes that operate along

a wide range of temporal scales (Johnson and Stinch-

combe 2007). On one hand, at short ecological time-

scales, communities vary in species composition due to

processes of birth, death, migration, and dispersal,

among others. All these processes cause variation in

abundance and composition and might alter the type,

number, and strength of interactions observed (Herrera

1984, Jordano 1984, 1985, 1994, Vázquez et al. 2007).

Similarly, over short ecological timescales, species might

respond to changes in the environmental conditions by

phenotypic plastic responses (Agrawal 2001, Price et al.

2003). For instance, consumer species may seasonally

switch the resources used, thus modifying the interac-

tions exerted and causing variation in network properties

over short timescales (Rooney et al. 2006). On the other

hand, at much longer timescales, species evolve or

coevolve in a set of morphological and behavioral traits

(adaptations) that might determine the species with

which they interact (Thompson 2005). Such evolutionary

processes may imply the generation of geographical

mosaics of selection, coevolutionary hotspots, and trait-

remixing processes (Thompson 2005, Gomulkiewicz et

al. 2007). All these processes may require a considerable

number of generations and thus are thought to operate

over longer temporal scales (for a review of the temporal

convergence of evolutionary and ecological dynamics,

see Hairston et al. 2005, Coulson et al. 2006, Fussman et

al. 2007, Hendry et al. 2007).

Here we studied the temporal variation in three

network properties of consumer frugivorous bird species

(number of interactions of bird species m (km),

interaction strength (ISm), and interaction asymmetry

(Am)) in a temporal sequence of 28 networks spanning

two years. The data set is unique in having robust,

independent estimates of resource (fruits, invertebrates)

and avian abundances, as well as patterns of resource

use based on dietary analyses. The mutualistic plant–

animal network analyzed was composed of 24 frugivo-

rous bird species and 15 plant species that produce fleshy

fruits. It was located in a Mediterranean shrubland

community in southern Spain (Jordano 1984). Three

main hypotheses dealing with the temporal variation of

consumer interaction properties were tested (Table 1).

The three hypotheses examine the effect of bird

abundance, bird foraging behavior, and morphology in

determining network patterns.

The abundance hypothesis (Jordano 1987b, Vázquez

and Aizen 2004, Vázquez et al. 2007) states that short-

term variation in local population abundance is the

principal factor that determines the variation in the

number and strength of interactions in ecological net-

works. It predicts that species with greater abundance

will have both a greater number of interactions and

stronger interactions with other species in the community

(Vázquez et al. 2005, 2007, Stang et al. 2006). If the

hypothesis holds, we expect that bird interaction

properties (km, ISm, Am) would be positively related with

the temporal variation of bird abundance (Nm) and/or

resource abundance of fruits (R1) or insects (R2). If both

bird and resource abundance increase the probability of

interaction, an increased frequency of interactions

should be observed when both birds and resources are

very abundant. In this case the interactions between bird

density and resource abundances (Nm 3 R1 and Nm 3

R2) should perform as significant predictors of the

temporal variation of network properties (km, ISm, Am;

see Table 1).

The switching-behavior hypothesis states that con-

sumer species will show increased number of interactions

and higher interaction strengths in the resource channel

that they preferentially use during a given elapse of time

(Murdoch 1969, Berthold 1976, Van Baalen et al. 2001,

Abrams 2006, Rooney et al. 2006, Eveleigh et al. 2007).

Resource channels (Rooney et al. 2006, 2008) are

composed of two or more sets of species that are usually

unrelated at high taxonomic levels (i.e., fungi vs.

bacteria, invertebrates vs. fleshy fruits), that show specific

turnover rates (production : biomass ratios), and share

common top-consumer species. In our study system, top

consumers are bird species that seasonally alternate

between two resource channels: fleshy fruits (R1) and

invertebrates (R2) (Jordano 1984, 1985, 1987a). The

switching-behavior hypothesis predicts a positive and

significant association between the temporal variation in

the percentage of fruits used in the diet (%R1) and

network properties measured (km, ISm, Am).

The species trait hypothesis states that evolutionary

processes result in unique morphological, behavioral,

and life-history traits that constrain the type, number,

and strength of the interactions exerted by species

(Thompson 2005, Björklund 2006, Stang et al. 2006).

The species trait hypothesis predicts the existence of a
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limited set of morphological, behavioral, or life-history

traits that explain interspecific differences observed

between species in the number and strength of interac-

tions (Stang et al. 2006). Similarly, according to the

species trait hypothesis, the identity of a species (used as

a proxy of its unique evolutionary history) is expected to

be a fundamental variable explaining the temporal

variation in the type, number, and strength of its

interactions with other species. If adaptation strongly

determines network patterns, we predict that species

would maintain consistently a distinct number and

strength of interactions along the whole temporal

sequence examined here (two years), irrespective of

temporal changes in abundance or species switching

behavior. Therefore, we expect that species identity (Sp)

will be associated with significantly different values of

network properties (km, ISm, Am) along all the temporal

sequence (Table 1).

The coupled effect of population abundance varia-

tion, switching behavior, and morphological traits might

determine to some extent bird interaction patterns

(Jordano 1987b, Jordano et al. 2003, Stang et al. 2006,

Vázquez et al. 2007). Interestingly enough, abundance,

behavioral, and morphological variables are expected to

differ in the degree of phylogenetic signal (i.e., to what

extent closely related species show similar values for

these variables). For instance, local bird abundances

have been found to exhibit low or no significant

phylogenetic signal (Cofre et al. 2007), and behavioral

traits usually exhibit less phylogenetic signal than

morphological traits (Wcislo 1989, Blomberg et al.

2003). Thus network properties might rely on a set of

variables or specific traits that evolve at different rates

and strongly differ in their phylogenetic conservatism

(Böhning-Gaese and Oberrath 1999, Blomberg et al.

2003, Cattin et al. 2004, Cofre et al. 2007). In sum, the

phylogenetic signal observed in network properties

should be quite variable depending on the relative

importance of abundance, behavioral, and morpholog-

ical traits implied (Fig. 1, Table 1). Therefore, phyloge-

netic signal in networks should be expected to reach

intermediate values between those observed for abun-

dance (low or nonsignificant) and morphological traits

(high). Overall, our main aim here is to contrast the

abundance, the switching behavior, and the species trait

hypotheses, to evaluate if these three mechanisms are

active and to assess their relative importance.

MATERIAL AND METHODS

Study site

Fieldwork was conducted in Hato Ratón, an area

located at the northeast border of the Doñana National

TABLE 1. Hypotheses and predictions tested.

Hypothesis
Independent
variables Theory Prediction

Expected
phylogenetic
signal (K )

H1 Differences in local consumer
and resource population
abundance produce
asymmetrical relationships
in plant–animal interactions.

Variation in bird population
abundance, resource
abundance, or their
interaction will
significantly predict bird
interaction properties
(km, ISm, and Am).

nonsignificant or low
Consumer abundance Nm

Resource abundance R1, R2

Consumer abundance
and resource
abundance

Nm 3 R1,
Nm 3 R2

H2 Species seasonally switch the
percentage of diet destined
to alternative resource
channels (R1, fruits; R2,
invertebrates). Differences
in quantitative use of the
channels shape asymmetrical
relationships in plant–animal
interactions.

Seasonal variation in the
percentage of fruits in the
diet will significantly
predict bird interaction
properties (km, ISm, and
Am).

mid or high
Switching behavior %R1, %R2

H3 Bird species differ in life-history
and morphological traits that
are products of their unique
evolutionary histories. Such
differences between species
determine specific interaction
patterns and produce
asymmetrical relationships.

Interspecific differences in
bird morphological traits
will be associated with
differences between species
in bird interaction
properties (km, ISm, and
Am) by direct or indirect
causal paths (Fig. 1). Bird
species identity (Sp) will
consistently predict
differences in bird
interaction properties
(km, ISm, and Am).

high

Species trait Sp

Note: Variables are: Nm, bird abundance for focal bird species m; R1, fruit abundance; R2, invertebrate abundance; %R1,
percentage of fruits in the diet; %R2, percentage of invertebrates in the diet; Sp, species identity.
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Park, Huelva province, southwestern Spain (Jordano

1984). The study period extended from early 1981

through April 1983, encompassing two consecutive

fruiting seasons. The study site is a medium to high

(2.5–5 m) dense, sclerophyllous shrubland growing on

sandy soils at 13 m of elevation. Vegetation was dom-

inated by tall shrubs and treelets of Pistacia lentiscus

(Anacardiaceae), Olea europaea var. sylvestris (Olea-

ceae), Phillyrea angustifolia (Oleaceae), and Rhamnus

lycioides (Rhamnaceae). The shrubland is characterized

by abundant cover and diversity of plants producing

fleshy fruits (72.2% cover, n ¼ 21 species), but is

dominated by P. lentiscus (33.4% cover).

Data

Quantitative data on interactions between birds and

fleshy-fruiting plants were derived from fecal samples of

birds captured in mist nets (Jordano 1984, 1985). In

total, 10 mist nets were operated weekly, two days per

week. The nets were opened from dawn to dusk and

checked at hourly intervals. The relative importance of

animal prey (mostly arthropods) and vegetable remains

(mostly fruits) in bird feces was assessed. The percentage

volume occupied by each fraction (to the nearest 10%)

was estimated visually. These measures were used as an

estimate of the relative resource-channel use (fruits, %R1;

invertebrates, %R2). Fecal samples were mostly com-

posed of fruits and invertebrates. Flowers or other

resources were very infrequently consumed by a few

species and occupy negligible fractions of the samples.

Thus, for all the samples, %R1 ffi 100�%R2. Both seeds

and pulp remains in the feces were identified, the latter by

microscopic inspection of the pericarp tissue. The

analyses were carried out from July to November,

covering a total of 28 periods of 15 days in 1981–1983.

This resulted in a temporal sequence of 28 networks, with

13 and 15 networks per year, respectively. During the

spring period (April–June), birds totally switched to an

insectivorous diet due to the increased availability of

insects and the near absence of fruits in the environment

(Carnicer et al. 2008). In spring, fruit–bird interactions

were occasional and rare phenomena. For instance,

during May–June of 1981, after two months of intensive

mist-net sampling, a single fruit–bird interaction was

detected. Therefore, we excluded April–June data and

restricted the analyses to the months spanning the main

fruiting season (July–March).

Networks were examined by grouping by 15-day,

monthly, and two-month periods. We observed a high

temporal turnover in the type and number of interac-

tions (Appendix A) and a great weekly variation in bird

densities, fruit abundances, and percentages of fruits

consumed in the diet (Fig. 2). Therefore, we opted for

the higher scale of resolution (15 days) in order to more

precisely quantify and analyze the temporal variation of

interactions within short temporal slices where fluctua-

tions of available resources (fleshy fruits and inverte-

brates) and consumer densities were minimized.

Bird abundance data were obtained by performing

weekly counts along a permanent 1-km transect fol-

lowing the procedure of Emlen (1981). Variation in fruit

production was estimated using transect counts of the

total number of ripe fruits per unit area that were

checked every 15 days in 15 replicate plots of 303 1.5 m

(Jordano 1984). Relative variation in invertebrate

abundance was calculated using adhesive traps that

were set hanging from vegetation and on the ground

(Jordano 1984); these traps were monitored weekly. Bird

morphological measures (wing, tail, body mass, gape

width, tarsus, culmen) were obtained from birds

captured in the mist nets using standard procedures

(Jordano 1984, 1987a, c). Previous studies of frugivo-

rous Mediterranean birds have documented the rele-

vance of these morphological traits on fruit and insect

consumption (Jordano 1987a, c).

The sampling effort applied was constant during the

study period, and this allowed the quantitative assess-

ment of the temporal dynamics of interaction networks.

However, it is important to bear in mind that two-week

temporal slices are not to be interpreted as fully resolved

networks: the number of interactions observed is prob-

ably limited by the strength of the sampling effort applied

(20 mist nets per week; mean ¼ 7.8 captures per species

per time period). Increasing the sampling effort per time

unit (e.g., 40 mist nets per week) would surely provide an

increase in the number of interactions per time unit

detected and a better resolution of the studied networks.

The selection of the two-week periods represents a

compromise between sample-size returns and the biases

that would be introduced by using longer periods of

sampling (e.g., monthly or two-month periods).

Network properties measured

The three hypotheses were examined on three network

properties for consumer bird species (the number of

FIG. 1. An illustrative scheme of the hypothesized causal
relationships among abundance, behavioral and morphological
traits, network properties, and phylogenetic signal (measured
by the statistic K, which indicates the degree of similarity of
closely related species; i.e., the degree of phylogenetic conser-
vatism).
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interactions per species or degree, interaction strength,

and asymmetry). We restricted our analysis to consumer

bird species in the mutualistic plant–animal network

(fleshy-fruited plant species and frugivorous birds). This

restriction allowed us to focus on hypotheses based on

bird natural history. Arthropod–bird interactions were

not included in the analyses because the taxonomic

resolution of animal prey identification was much lower

(i.e., order level) and produced coarse and very

imprecise networks. Pajek software was used to calculate

species degree and interaction strength for each bird

species (De Nooy et al. 2005). Bird species degree (km)

was defined as the number of interactions of a focal bird

species m with other plant species in each time period

(see Brandes and Erlebach [2005] for an introduction to

the term degree and its use in graph theory). Interaction

strength (ISmn, hereafter) was estimated from the total

number of fruits recorded for a plant–animal interaction

during two weeks (Vázquez et al. 2005, 2007). Interac-

tion strength for a bird species m (ISm) was calculated as

the sum of all the interactions strengths with n interacting

plant species (ISm ¼ R ISmn) (Bascompte et al. 2006).

Note that this measure of interaction strength does not

measure the relative impact of the consumer species on

plant demography (Sabo et al. 2005), and thus clearly

differs from other system-level measures of interaction

strength usually used in microcosm and experimental

field approaches (Paine 1992, Sabo et al. 2005). Ideally,

FIG. 2. Temporal trends observed in the studied variables over 40 15-day time periods, from July 1981 to February 1983. (a)
Variation in resources, R (log-transformed): fruit abundance (solid circles, R1) and insect abundance (open circles, R2).
(b) Variation in bird density (log-transformed); within a 15-day period, each circle represents a different species population, but
most species were detected in several 15-day periods. The percentage of fruits in the diet is shown for (c) fast switchers, (d) delayed
switchers, and (e) invertivore specialists, with circles representing individual samples. Note that data for May–June 1982 were not
available, which causes a gap around time period number 20. Lines represent cubic spline fits (JMP version 5); for details, see
Methods: Temporal trends in network structure, switching and abundances.
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interaction strength measures also should integrate the

fate of seeds once the disperser leaves the mother plant.

This would require an evaluation of (1) the treatment the

disperser gives to the seeds (digestive tract passage can

destroy seeds or enhance germination), (2) the quality of

deposition that is associated with spatial movement of

dispersers, and (3) the demographic fate of dispersed

seeds. However, due to practical reasons, the demo-

graphic consequences are only evaluated at the first stage

of the dispersal cycle (e.g., the amount of fruit consumed

by dispersers during a given time period) and we take this

as a proxy for estimating interaction strength (Vázquez

et al. 2005, Bascompte et al. 2006).

Following Vázquez and collaborators (2007), we

defined interaction asymmetry (Am) as a species-level

property that evaluates the relative difference between

the number and strength of interactions exerted by a

focal species on its partner species vs. the number and

strength of interactions exerted by partner species on the

focal species. A detailed mathematical description is

provided in Vázquez et al. (2007). Asymmetry values

range between�1 and 1. Positive values indicate that the

number and strength of the interactions with partner

species are quantitatively more important than the

reciprocal effect exerted by the interaction partners on

the focal species (Vázquez et al. 2007). Negative values

indicate the reverse situation, in which the number and

strength of interactions of partner species on the focal

species are more important than the effect of focal species

on them. Zero values indicate symmetrical interactions

(Vázquez et al. 2007). Again, note that this asymmetry

measure is not evaluating the demographic effects of fruit

consumption on plant populations, and therefore clearly

differs from system-level measures that experimentally

estimate this effect (Paine 1992).

Asymmetry values along the temporal sequence for

each species were calculated using a MATLAB code (see

Supplement). Additionally, we measured other network

traits: maximum and minimum interaction strength for

each species and time period, core, and centrality. A

description of these network measures is provided in De

Nooy et al. (2005).

Temporal trends in network structure,

switching, and abundances

We studied the temporal variation of three variables:

plant–bird interactions, bird switching behavior between

invertebrates and fruits, and bird abundance. First, we

analyzed fecal samples collected over two years and

obtained a temporal sequence of the variation of plant–

bird interactions. Second, fecal samples were used to

assess the proportion of fruits and invertebrates used by

each species along the temporal sequence (switching

behavior). Differences in switching rates between species

were quantified by plotting the percentage of fruits in the

diet (R1) against the resource ratio in the environment

(calculated as R1/(R1 þ R2); or R1/R2) for each species

(Carnicer et al. 2008). Sigmoid curves (four-parameter

logistic equations) were fitted using nonlinear regression

methods. We estimated switching delay for each species

by calculating the relative environmental resource ratio

at which 25% of fruits in species’ diet was achieved

[R1/R1þR2]25. PRISM software version 5.0 (GraphPad

Software 2008) was used to interpolate values from the

sigmoid curves fitted. In addition to sigmoid fits, we

explored and applied linear fits using standard least

squares models. These analyses allowed the evaluation

of switching-behavior responses in relation to changes in

the relative proportion of resources in the environment

for each species.

Third, line transect census data were used to estimate

the temporal variation in bird abundances independent-

ly from the feeding records (derived from fecal analyses)

used to characterize interaction patterns. For illustrative

purposes, the temporal variation of bird abundance and

switching-behavior trends were fitted using the cubic

spline method using JMP version 5 (SAS Institute 1989–

2002). This method uses a set of third-degree polyno-

mials spliced together such that the resulting curve is

continuous and smooth at the splices (knot points). The

estimation is done by minimizing an objective function

composed of a combination of the sum of squares error

and a penalty for curvature integrated over the curve

extent.

Hypothesis testing

To assess the relative support for each of the

hypotheses examined, we modeled bird interaction

properties as a function of the variables associated with

each hypothesis (Table 1). We used generalized linear

mixed models with node identity (Sp), percentage of

fruits in the diet (%R1), bird abundance (Nm), fruit

abundance (R1), invertebrate abundance (R2), and the

interactions (Nm3R1;Nm3R2) as independent variables

(Wolfinger and O’Connell 1993). Sampling effort was

maintained constant across the whole study period and

therefore the number of bird captures in mist nets was

proportional to local species’ abundance (R2¼0.57; P ,

0001). This abundance effect on sample size, and

therefore on the number of interactions, was accounted

for in the models by introducing the variable density

(Nm). However, some species were possibly under-

sampled because of their idiosyncratic mobility behavior

or stochastic sampling effects. To quantitatively account

for such deviations, we estimated the sampling effort by

regressing for each species the number of captures

against the local abundance estimates derived from line

transect counts. The residuals of this regression assessed

the observed difference between local abundance and the

realized sample size for each species and time period and

thus provided a reasonable estimate of the sampling

effort. Sampling effort, time period (15-day periods), and

year were introduced in the models as random variables.

We used the GLIMMIX procedure of SAS 9.1.3 (SAS

Institute 2008) and JMP 5 to perform the analyses.
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Species with no fruit in the diet were excluded from the

analyses.

Testing for the independence of the hypotheses

The hypotheses examined (abundance, switching

behavior, and species trait) are probably not indepen-

dent. Indeed, life-history and morphological traits are

known to affect both bird abundance and resource

choice behavior (Böhning-Gaese and Oberrath 1999,

2001, Stang et al. 2006). To assess if morphological

traits were effectively associated with bird abundance

and interspecific differences in switching behavior

(Fig. 1), we applied two different approaches. First, we

modeled the percentage of fruits in the diet (%R1m) and

abundance (Nm) as a function of nine morphological

traits (body mass, wing length, tail length, tarsus length,

culmen 1 (length to skull base), culmen 2 (exposed

culmen to feather edge), beak width, culmen height,

gape width). Specifically, morphological traits were

measured in 2028 birds captured in the mist nets during

the whole study period. These models allowed us to

evaluate if abundance variation and switching behavior

were associated with interspecific differences in these

morphological traits.

Second, we conducted a path analysis to assess the

existence of significant direct and indirect effects of

morphological traits on the percentage of fruits in the

diet (%R1m), bird abundance (Nm), and bird interaction

properties (km, ISm, Am); see Fig. 1. Phylogenetic

contrasts were applied to estimate the influence of

phylogenetic signal in the path coefficients (Felsenstein

1985, Midford et al. 2002, Martins 2004).

Testing for phylogenetic conservatism

in the variables used

To compare phylogenetic signal of network traits

relative to abundance, behavior, and morphological

traits, we used the following approaches. To assess the

degree of phylogenetic conservatism in bird consumer

interaction properties (km, ISm, Am), we applied a

randomization test for phylogenetic signal to the

variables under study: degree, interaction strength, and

asymmetry (Blomberg et al. 2003). The means of the

values in km, ISm, and Am for all the temporal sequence

were used for each species. We used the MATLAB

program PHYSIG.m to calculate the statistic K (Blom-

berg et al. 2003). A K value less than one implies that

species resemble each other less than expected under

Brownian motion evolution along the candidate tree. A

K value greater than one implies that close relatives are

more similar than expected under Brownian motion

evolution, and thus indicates strong phylogenetic

conservatism (Blomberg et al. 2003). K values obtained

for the dependent variables studied (km, ISm, Am) were

compared to those observed for bird abundance (Nm),

switching behavior (%R1), and nine morphological

traits: body mass, wing length, tail length, culmen

height, tarsus length, culmen 1 (length to skull base),

culmen 2 (length of exposed culmen to feather edge),

gape width, and intestine length. These comparisons
allowed us to assess the relative phylogenetic conserva-

tism of network traits relative to abundance, behavior,
and morphological traits.

RESULTS

Temporal trends in abundance, resource switching,

and network interactions

The two resource channels (fruits and invertebrates)
varied asynchronously with contrasting peaks. Fruits

presented a maximum abundance in autumn, whereas
the invertebrate abundance maximum was in spring,

with a secondary peak in early autumn (Fig. 2). Bird
species abundance varied temporally, by the effect of

autumn and spring migratory passes, migration of
wintering and breeding species, and variation in local

resident abundance. Overall, bird abundances were
greater in autumn and winter, matching the temporal
pattern of fruit abundance (Fig. 2).

The bulk of the species showed seasonal shifts in the

percentage of fruits (%R1) and invertebrates (%R2) in
the diet. Switching behavior was observed in 14 out of
24 species. We could differentiate three basic types of

switching behavior: fast switchers, delayed switchers,
and invertebrate specialists (Figs. 2 and 3, Appendix B).

Fast switchers were species that very rapidly increased
the percentage of fruits in the diet with relatively small

increases in the ratio of fruits to invertebrates in the
environment. Delayed switchers demanded a greater

increase in the ratio of fruits to invertebrates to start
switching to the fruit resource channel (Fig. 3). When

they finally switched, they switched to a lesser extent,
thus conserving a relatively high percentage of inverte-

brates in the diet. Invertebrate specialists were those
species that were insensible to the changes in the

environmental ratio of fruits to invertebrates and
maintained consistently an invertivorous diet coupled

with the occasional ingestion of some fruits. Out of 20
species, 10 behaved as fast switchers (Erithacus rubecula,
Phoenicurus phoenicurus, Sylvia atricapilla, S. borin, S.

cantillans, S. communis, S. hortensis, S. melanocephala,
Turdus merula, T. philomelos), four species behaved as

slow switchers (Luscinia megarhynchos, S. undata,
Muscicapa striata, Ficedula hypoleuca), and five as

invertivore specialists (Hippolais polyglotta, Phyllosco-
pus collybita, P. bonelli, P. trochilus, Regulus ignicapil-

lus). Finally, for six species, interaction data were too
scarce to evaluate any temporal trend in resource-

channel use (Parus caeruleus, P. major, P. cristatus,
Phoenicurus ochruros, Saxicola torquata, Turdus iliacus).

When analyzing the variation in the percentage of fruits
in the diet as a function of the relative resource supply

(calculated as R1/(R1 þ R2) or R1/R2), significant fits
were obtained applying both sigmoid nonlinear fits and
linear least square models. Responses of fast switchers

(the most numerous group) consisted of an initial linear
response that accounted for the bulk of the variation
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and a subsequent saturation phase (at 80–100% of fruits

in the diet) in which the percentage of fruits was inde-

pendent of the relative quantity of fruits in the environ-

ment (Fig. 3, Appendix B).

The temporal structure of plant–bird interactions is

shown in Appendix C (see Nagy 1987). The total

number of interactions was higher during the fruit peak

periods (September–November), matching the trends in

fruit resource variation and bird abundance (Fig. 2).

Hypothesis testing

The three hypotheses examined were empirically

supported (Table 2). However, a different pattern of

response was observed for species degree and interaction

strength. Abundance was a good predictor for interac-

tion strength patterns, but explained less variation in

qualitative network patterns (degree) (Table 2, Fig. 4).

The interaction between resource and bird abundance

was strongly significant for degree, indicating that both

consumer and resource abundances contribute to in-

crease the probability of interaction. The models ex-

plained 62–76% of variation across species in network

properties (Table 2).

Testing for hypotheses independence

Models explaining the variation of bird abundances

(Nm) and the percentage of fruits in the diet (%R1) using

morphological traits performed much better in the case

of the percentage of fruits in the diet than with abun-

dance (Appendix D). Indeed, morphological traits

explained only 6% of the variation in bird abundances

(P , 0.05) but explained 43% of variation among species

FIG. 3. Bird switching-behavior trends observed between fruit resources (R1) and invertebrate resources (R2). The figure
distinguishes between fast switchers (open circles, solid lines), slow switchers (solid circles, dashed lines), and invertebrate specialists
(asterisks, dotted lines).

TABLE 2. Effect tests for the independent variables.

Test effect

km, R
2 ¼ 0.69 ISm, R

2 ¼ 0.62 Am, R
2 ¼ 0.76

SS F P SS F P SS F P

Sp 128.13 3.76 ,0.0001 46019.6 4.32 ,0.0001 4.803 3.210 ,0.0002
%R1 8.80 4.40 0.039 889.6 1.42 0.236 0.770 8.750 0.004
Nm 18.34 9.16 0.003 16628.8 26.56 ,0.0001 0.524 5.959 0.017
R1 3.48 1.74 0.191 2545.8 4.07 0.047 0.168 1.912 0.171
R2 1.28 0.63 0.426 1023.3 1.63 0.205 0.024 0.274 0.602
Nm 3 R1 17.89 8.93 0.004 757.7 1.21 0.27 0.048 0.544 0.463
Nm 3 R2 15.01 7.50 0.008 5100.2 8.14 0.006 0.037 0.420 0.519
Sampling effort 7.31 3.65 0.060 3956.9 6.32 0.014 0.071 0.808 0.371

Notes: Dependent variables are the number of interactions or degree (km), interaction strength (ISm), and asymmetry (Am) for
focal bird species m. The total percentage of variance explained (R2 adjusted, P , 0.0001) is also provided for the three models (km,
ISm, Am).
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in the percentage of fruits in the diet (P , 0.0001). Beak

morphology traits (gape width and culmen length) were

strongly associated with the percentage of fruits in the

diet (Appendix D). In line with these results, path

analyses indicated significant indirect effects of gape

width on the number and asymmetry of bird interactions

(km, Am) through their effect on switching behavior

(%R1) (Fig. 4). Overall, our results suggest that foraging

morphological traits are directly associated with switch-

ing behavior, gape width being the character most

strongly associated with this behavior.

Testing for phylogenetic signal

The three bird interaction properties examined (km,

ISm, Am) showed a significant phylogenetic signal (P ,

0.05; Appendix E). In contrast, other network measures

(centrality and minimum interaction strength) did not

show a significant phylogenetic effect. As expected,

morphological traits were characterized by stronger

phylogenetic signals and abundance was not significant-

ly associated with phylogeny. Interestingly enough, we

found intermediate K values for all network properties

examined. Indeed, network K values were weaker than K

values for morphological traits, similar to K values

observed for behavioral traits and greater than K values

observed for species abundance (Fig. 5).

DISCUSSION

Our results suggest that network patterns are influ-

enced by a diverse array of ecological processes that may

operate at different temporal timescales (Hastings 2004).

The coupled effect of local abundance variation,

phenotypically plastic responses (resource choice and

switching behavior) to the varying food supply, and

species evolutionary adaptive processes might be shap-

ing network patterns. We showed that both species

abundance and switching behavior vary at the ecological

timescale and determine bird interaction patterns. Our

results also supported the existence of adaptations in

ecomorphological and foraging traits that shape the

architecture of network patterns (Stang et al. 2006).

However, the importance of morphological constraints

differed in the case of species abundance and switching

behavior hypotheses. Morphological traits were weakly

related to interspecific differences in bird abundance but

strongly related to the percentage of fruits in the diet and

the ability to seasonally switch among invertebrates and

fruits as their supply varies. Thus, switching behavior

changes seasonally at an ecological timescale but criti-

cally depends on foraging morphological traits (beak

shape) that might evolve at much slower temporal rates.

These findings are consistent with the existing literature

that suggests an important role of bird beak shape in

constraining the type and number of interactions

established by birds (Jordano 1987a, b, Benkman 1999,

Böhning-Gaese et al. 2003); promoting diet diversifica-

tion and speciation processes (Abzhanov et al. 2004, Wu

et al. 2004, Fitzpatrick et al. 2005, Grant and Grant

2006, Phillimore et al. 2006) and even highlighting a

FIG. 5. Comparison of the values of the statistic K in
network properties (open circles: degree, interaction strength,
asymmetry, maximum interaction strength, minimum interac-
tion strength, centrality, and core) and K values for abundance,
behavioral, and morphological traits (solid circles: Nm, %R1,
gape width, body mass, intestine length, culmen height, wing
length, tail length, tarsus length, and culmen length). A K value
less than 1 implies that species resemble each other less than
expected under Brownian motion evolution along the candidate
tree; a K value greater than 1 implies that close relatives are
more similar than expected under Brownian motion evolution.
A Tukey-Kramer test comparing the mean phylogenetic signal
in network properties vs. morphological traits shows signifi-
cance (P , 0.0001). The line across the center of each diamond
represents the group mean. The vertical span of each diamond
represents the 95% confidence interval for each group. Short
horizontal lines near the top and bottom of each diamond are
overlap marks at (

ffiffiffi

2
p

/2)CI above and below the group mean.

FIG. 4. Path diagram of expected causal effects of gape width, bird population density (Nm), and switching behavior (%R1) on
three network properties: (a) degree (km); (b) interaction strength (ISm); and (c) asymmetry (Am) for focal bird species m. Heavy
arrows and boldface values represent significant path coefficients (P , 0.05). Values within parentheses are path coefficients
corrected by phylogenetic contrasts.
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possible role of beak shape in driving the evolution of

bird behavior (Podos 2001).

Our results provide a preliminary framework to

interpret consumer specialization and generalization

patterns in bird–fleshy fruiting plants networks in terms

of temporal responses to the resource supply. First, three

main types of specialization–generalization behaviors

were found in birds: fast switchers (generalists), delayed

switchers (circumstantial generalists), and invertebrate

specialists. Only fast switchers play a significant role in

shaping the architecture of plant–bird network in terms

of degree and interaction strength because they become

central in the network, i.e., concentrate a high number of

interactions. Thus, bird species characterized by a low

number of plant–bird interactions and weak interaction

strengths were invertebrate eaters that only fed on fruits

when they were extremely abundant (delayed switchers)

or invertebrate eaters that only occasionally consumed

fruits (invertebrate specialists). Interestingly enough,

these findings are consistent with the predictions of

optimal foraging theory. Theory predicts that species

with higher handling times (smaller gape widths) would

only use the less profitable prey (fruits) when the rate of

encounter with the more profitable prey (insects) falls

below a critical value (i.e., when fruits are very abundant

and insects are scarce) (Berthold 1976, Charnov 1976,

Stephens and Krebs 1986, Fryxell and Lundberg 1994,

Krivan 1996, Berec et al. 2003). Thus, switching in

insectivore species should be more prone to occur in the

autumn fruiting peak, when fruits are superabundant

and invertebrates scarce. This is consistent with the

trends described for delayed-switching species. We

suggest that optimal foraging and switching behavior

theory might be applied to understand and predict bird

specialization–generalization network patterns (Fryxell

and Lundberg 1994, Krivan 1996, van Baalen et al.

2001, Abrams 2006, Beckerman et al. 2006), especially

situations in which alternative food resources vary

seasonally.

The patterns shown highlight that bird interaction

strength patterns are strongly associated with abun-

dance variation. The interaction of resource and

consumer abundance was highly significant, suggesting

that the coupled phenomena of high consumer and

resource abundances increase the probability of inter-

action. Different multi-scale spatial resource-tracking

responses are probably shaping local bird abundances

and plant–animal interaction patterns in southern Spain

(Rey 1995, Garcı́a and Ortiz-Pulido 2004, Tellerı́a et al.

2008). For instance, Tellerı́a et al. (2008) have recently

found strong interspecific differences in spatial resource-

tracking responses among frugivorous birds, with

significant spatial correlations between resource and

bird abundances in some species (S. atricapilla, E.

rubecula) and the absence of a significant correlation in

others (S. melanocephala, T. merula, T. philomelos). Our

results are consistent with their empirical findings, and

we observed positive significant temporal correlations

between fruit availability and bird abundances only in E.

rubecula (R2 ¼ 0.17, P , 0.04) and S. atricapilla (R2 ¼
0.33, P , 0.002).

Abundance was weakly related to the variation in

morphological traits and no phylogenetic signal was

observed in bird abundance. This evidence implies that

interaction strength patterns of frugivorous birds might

be less influenced by evolutionary constraints. This

assertion is strongly supported by recent findings of

Rezende et al. (2007), who reviewed 36 plant–pollinator

and 23 plant–frugivore mutualistic networks and found

that the amount of phylogenetic signal for interaction

strength was significantly lower than for estimates of

species degree. We suggest that switching behavior and

morphological constraints play a greater role in deter-

mining the type and number of interactions exerted by

bird species, whereas abundance variation plays a more

active role in determining bird interaction strength

patterns.

Obviously, other complementary processes might be

influencing the interaction patterns but are not exam-

ined here. Likely candidates would be geographic

variation and scale dependence in the patterns of

foraging (Tellerı́a and Carbonell 1999, Garcı́a and

Ortiz-Pulido 2004, Tellerı́a et al. 2008), spatially

aggregative foraging behaviors (Jordano 1985, Rey

1995, Tellerı́a et al. 2008, Yang et al. 2008), reproductive

responses to resource pulses (Yang et al. 2008), and

conspecific and heterospecific attraction among birds

(Mönkkönen and Forsman 2002).

Our results also provide some new insights into the

question of what determines the strength of phylogenetic

signal in network patterns. We showed that bird

interaction properties depend on species abundance,

behavioral, and morphological traits. All these types of

properties strongly differ in their phylogenetic conserva-

tism (Blomberg at al. 2003). Therefore, the strength of

phylogenetic signal observed in network patterns might

be explained by the relative importance of abundance,

behavioral, and morphological variables and should

usually take intermediate K values. Accordingly, we

should expect that interaction strength patterns would be

characterized by weaker phylogenetic signals because

they are more influenced by abundance variation. Recent

empirical evidence available supports this assertion

(Rezende et al. 2007; P. Jordano and J. Bascompte,

personal observation).

Overall, we demonstrate that network patterns are

determined by short-term variation in abundance and

seasonal variation in resource-switching behavior. Nev-

ertheless, acting at slower temporal rates of variation,

the adaptive processes shaping foraging morphological

traits also seem to play a very important role in defining

global network architecture. Adaptive evolutionary

processes acting on beak morphology and other traits

would ultimately determine the ability of bird species to

switch to fruits and the relative percentage of fruits in

the diet for each species (Jordano 1987, Abzhanov et al.

July 2009 1967NETWORK APPROACH TO TEMPORAL DYNAMICS



2004, Wu et al. 2004, Thompson 2005) and thus largely

shape variation in degree (i.e., generalization level)

across species. Therefore, adaptive processes acting on

bird foraging traits possibly define the roles of bird

generalist and specialist species and the specific locations

within the whole network architecture (Stang et al.

2006). However, other variables, such as local abun-

dance, may determine the short-term responses that

result in varying degrees of interaction strength among

species.
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Guimerà, R., and L. A. N. Amaral. 2005. Functional
cartography of complex metabolic networks. Nature 433:
895–900.

Hairston, N. G., S. P. Ellner, M. A. Geber, T. Yoshida, and
J. A. Fox. 2005. Rapid evolution and the convergence of
ecological and evolutionary time. Ecology Letters 8:1114–
1127.

Hastings, A. 2004. Transients: the key to long-term ecological
understanding? Trends in Ecology and Evolution 19:39–45.

Hendry, A. P., P. Nosil, and L. H. Rieseberg. 2007. The speed
of ecological speciation. Functional Ecology 21:455–464.

Herrera, C. M. 1984. A study of avian frugivores, bird-
dispersed plants and their interaction in Mediterranean
shrubland. Ecological Monographs 54:1–23.

Holt, R. D. 2002. Food webs in space: on the interplay of
dynamic instability and spatial processes. Ecological Re-
search 17:261–273.

Johnson, M. T. J., and J. R. Stinchcombe. 2007. An emerging
synthesis between community ecology and evolutionary
biology. Trends in Ecology and Evolution 22:250–256.

Jordano, P. 1984. Relaciones entre plantas y aves frugı́voras en
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APPENDIX A

Variation in the number of interactions observed at different timescale resolutions (Ecological Archives E090-135-A1).

APPENDIX B

Switching behavior classification (Ecological Archives E090-135-A2).

APPENDIX C

Temporal changes in network structure during 1981–1983 (Ecological Archives E090-135-A3).

APPENDIX D

Test effects for nine morphological variables predicting the variation in the proportion of fruits in the diet (Ecological Archives
E090-135-A4).

APPENDIX E

Values and significance of the statistic K for the variables under study (Ecological Archives E090-135-A5).

SUPPLEMENT

MATLAB code used in the calculation of asymmetry values (Ecological Archives E090-135-S1).
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Appendix A. Variation of the number of interactions observed at different time-scale resolutions.

 
   FIG. A1. Variation in the total number of interactions observed at three different scales of temporal resolution (15 days, white dots, thin
black line; one month, black squares, dashed line; two months, black dots, wide black line) during the whole study period (temporal
sequence of samples). Note that the space between adjacent curves is proportional to the temporal turnover in species interactions. These
results suggest a high turnover in the type and number of interactions, specially on the fruiting peak crests.
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Appendix B. Switching behavior classification.

TABLE B1. Community species. S = Fast switchers were characterized with low switching delay values
(< 0.4) and fast response curves (Appendix C); s = Switchers with fast response curves for which a
statistical fit of sigmoid curves was not allowed due to small sample size; S* = species that showed
delayed switching behavior (switching delay >0.4); I = species that consumed mostly invertebrates. U =
unclassified species due to small sample size. ** Significant sigmoid fit with P < 0.01.
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Appendix C. Temporal changes in network structure in 1981–1983.
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   FIG. C1. Temporal changes in network structure in 1981–1983. For illustrative purposes, bird nodes were scaled to daily energetic requirement in a
logarithmic scale (kJ/day) using scaling regression techniques (Nagy 1987). Plant nodes were scaled to the logarithm of fruit energy production (kJ/15
days) using specific estimates of fruit energy content (kJ/species of fruit) and fruit crop estimates (Jordano 1984). Left-hand column refers to bird
species and right-hand column refers to plants. A description of species codes is provided in Appendix B.
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Appendix D (Table D1). Test effects for nine morphological variables predicting the variation in the
proportion of fruits in the diet. **** P < 0.0001.
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Appendix E (TableE1). Values and significance of the statistic K for the variables under study.
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Supplement

MATLAB code used in the calculation of asymmetry values. 
Ecological Archives E090-135-S1.

Copyright

Authors 
File list (downloads)
Description

Author(s)

Carlos J. Melian 
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Unibversity of California Santa Barbara (UCSB) 
735 State Street, Suite 300 
Santa Barbara, CA 93101 USA 
E-mail: melian@nceas.ucsb.edu

File list

Asymmetry.m -- main script 
corr.m -- supplementary script
intimp.m -- supplementary script 
quant2bin.m -- supplementary script
soertmatr.m -- supplementary script

Description

This Supplement contains a Matlab script used to calculate asymmetry values.
Asymmetry.m needs four supplementary scripts ( corr.m, intimp.m,
quant2bin.m, soertmatr.m).

Asymmetry.m generates the following outputs: total degree each row (1st column);
frequency of interactions each row (2nd column); sum dependences each row (3rd column);
asymmetry value for each row (4th column). Finally, it gives the correlation values between
abundance and asymmetry.
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