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Summary

1. Dispersal ecology is a broad topical discipline that tackles important conceptual and applied
issues, such as the study of the ability of plants to transmit their propagules across fragmented and
managed landscapes.
2. The relevance of dispersal for plant populations is threefold because: (i) dispersal processes scale
from genes and individuals that disperse (or produce propagules to be dispersed) to population
dynamics and both local and regional distribution patterns; (ii) by dispersing propagules or individu-
als and the genes they carry, dispersal inherently links demographic and genetic dynamics across the
landscape; and (iii) dispersal elicits key ecological and evolutionary processes that sustain biodiver-
sity, such as species assembly in species-rich communities. The steady improvement of tracking
devices and molecular tools that trace the movement or infer provenance of organisms and the press-
ing need to address conservation issues have expanded the disciplinary boundaries of dispersal
ecology.
3. The discussion on the main advances on and challenges for dispersal ecology was the main moti-
vation for the organization of a thematic topic session entitled Dispersal processes driving plant
movement: challenges for understanding and predicting range shifts in a changing world at the
Annual Meeting of the British Ecological Society (2015, Edinburgh). This session brought together
researchers with different types of expertise and interests on dispersal processes and their contribu-
tions are now included in this special feature together with a few additional articles.
4. Synthesis. Overall, this special feature illustrates that dispersal ecology spans a broad range of
research topics by integrating eight contributions that cover key aspects of this discipline: from con-
ceptual and methodological advances to the study of the ecological and evolutionary outcomes.

Key-words: anthropocene, dispersal kernels, distribution range shifts, long-distance dispersal,
migration

Dispersal ecology is a broad topical discipline that assembles
fundamental ecological and evolutionary processes and tackles
important conceptual and applied issues (Fig. 1) (Sutherland
et al. 2013). In an increasingly managed, fragmented and
defaunated world, the ability of plants to transmit their
propagules underlies colonization processes and determines
range shifts (Nathan & Muller-Landau 2000; Clark, Lewis &
Horvath 2001; Urban 2015). Because management must also
be oriented to preserve remnant plant biodiversity, we need to

forecast the fate of plant communities inhabiting disturbed or
managed landscapes by quantifying to what extent global
change drivers modify the chances of plants to disperse
(Tilman & Lehman 2001; Driscoll et al. 2014).
Understanding dispersal processes is fundamental to

address a wide range of biological questions because dispersal
encapsulates key biological properties. First, dispersal pro-
cesses scale from genes and individuals that disperse (or pro-
duce propagules to be dispersed) to population dynamics and
both local and regional distribution patterns. Local regenera-
tion typically relies on short- to medium-distance dispersal,
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whereas the geographic range that a given species or commu-
nity occupies is defined by the rare arrival of long-distance
dispersal (LDD) events, sometimes mediated by non-standard
dispersal vectors (such as strong winds, migrating vertebrates
or human transportation) (Nathan 2006). Second, by dispers-
ing propagules or individuals and the genes they carry, dis-
persal inherently links demographic and genetic dynamics
across the landscape (Sork et al. 1999). Third, dispersal
underpins key ecological and evolutionary processes that sus-
tain biodiversity, such as species assembly in species-rich
communities (Hubbell 2001; Seidler & Plotkin 2006),
hybridization (Petit et al. 2004) and speciation processes
(Avise 2000).
Notably, in recent years, numerous studies have quantified

how far and how often organisms move across the landscape
(Cousens, Dytham & Law 2008; Clobert et al. 2012). The
steady improvement of tracking devices and molecular tools
that trace the movement or infer provenance of organisms and
the pressing need to address conservation issues have
expanded the disciplinary boundaries of dispersal ecology
(Robledo-Arnuncio et al. 2014). This was the main motiva-
tion for the organization of a thematic topic session entitled
Dispersal processes driving plant movement: challenges for
understanding and predicting range shifts in a changing
world at the Annual Meeting of the British Ecological Society
(2015, Edinburgh). This session brought together researchers
with different types of expertise and interests on dispersal
processes and their contributions are now included in this spe-
cial feature (SF) together with a few additional articles.
Overall, this SF illustrates that dispersal ecology spans a

broad range of research topics by integrating eight contribu-
tions that cover key aspects of this discipline: from concep-
tual and methodological advances to the study of the
ecological and evolutionary outcomes. The issue opens with

an integrative, conceptual framework to understand dispersal
events as a function of the dispersal distances and the genetic
neighbourhood reached by dispersed propagules (Jordano
2017). Such an integrative framework helps to explicitly link
demographic and genetic effects of dispersal; its central tenet
is that biologically meaningful definition of strict-sense LDD
events needs consideration of geographic (distance) frames
that include both population and genetic neighbourhood size
references. Thus, in the case of animal-dispersed species,
strict-sense LDD events are likely contributed by a minority
of frugivore species within highly diversified assemblages.
Farwig, Schabo & Albrecht (2017) specifically address the
effects of habitat fragmentation on seed removal by frugivo-
rous birds and mammals in relation to species-specific
responses to habitat disturbance. These results indicate that
seed removal may be relatively robust in spite of shifts in the
frugivore community in forest fragments. The effect is likely
related to functional trait complementarity and redundancy
within diversified frugivore assemblages, with forest general-
ists and small-bodied frugivores maintaining dispersal pro-
cesses in fragmented forests in temperate regions.
Yet specific dispersal functions like LDD may be negatively
affected by selective losses of e.g. large-bodied frugivore spe-
cies. The functional relevance of these LDD events is further
explored by Horvitz et al. (2017) who assess the spread of 17
of China’s worst invasive plant species and calculate the min-
imal arrival speed for the first record of each species in each
county. This empirical evidence points to an unequivocal role
of human-assisted dispersal, with spread patterns characterized
by long jumps of tens to hundreds of kilometres and extre-
mely fast average spread rates (~2–4 km per year), and highly
variable scales (0�1–128�2 km per year). In general, the study
of LDD still needs much more empirical data documenting
the extent and frequency of these events and moving beyond
exploration of species traits and habitat suitability to examine
the actual patterns and the mechanisms of large-scale popula-
tion spread (invasive or not). The empirical approach is par-
ticularly topical to improve our understanding and ability to
model animal- and human-mediated dispersal for which
mechanistic models are less advanced than those for wind-
dispersed propagules.
Dispersal ecologists have been gathering a wealth of empir-

ical data on dispersal patterns obtained from direct observa-
tions, telemetry and/or the analysis of molecular markers.
This offers a timely opportunity to implement two modelling
exercises (Nathan 2006): (i) finding a universal best-fitting
dispersal kernel that distil major features of dispersal patterns
for a wide range of plant species with different dispersal
mechanisms and (ii) applying novel tools that take the most
of available data to delve into the tail of dispersal kernels, the
most elusive part of the dispersal kernels. Both issues are
covered in this SF. On the one hand, Bullock et al. (2017)
have synthesized empirical data sets available in the literature
(N = 168) to fit and compare the performance of 11 widely
used best-fitting density functions across a broad range of
species and dispersal modes. No one function systematically
outperformed other functions, suggesting that the best-fitted
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Fig. 1. Schematic depiction of the major ecological topics that
revolve around dispersal ecology. [Colour figure can be viewed at
wileyonlinelibrary.com]
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dispersal kernel is context-dependent and researchers should
fit and compare several functions, particularly if they are
interested in forecasting both short- and long-distance disper-
sal events. Note that dispersal kernels typically integrate the
action of different biotic and abiotic dispersal vectors that
respond differently to the landscape (the total dispersal kernel,
sensu Nathan 2007) and this complexity is difficult to summa-
rize in a simple versatile function. On the other hand, empiri-
cal data sets can provide valuable insights on the extent of
the tail of the dispersal kernels by applying statistics of
extremes (Garcia & Borda-de-Agua 2017). Conveniently,
these statistical approaches use only a subset of the observed
values (particularly the large, extreme ones) to infer the prob-
ability and extent of yet unobserved, but not impossible, LDD
events (Coles 2001; Katz, Brush & Parlange 2005). These
very long – i.e. extreme – dispersal distance events underlie
colonization patterns that eventually might result in distribu-
tion range shifts. Overall, the application of statistics of
extremes opens new interesting theoretical and applied
insights to move forward in understanding the consequences
of rare LDD events.
In addition to demographic consequences, dispersal is also

of major importance for eco-evolutionary dynamics as local
adaptation and genetic drift are determinant processes during
expansions or distribution range shifts (Excoffier, Foll & Petit
2009; Kremer et al. 2012). In this SF, three contributions
relate to this aspect by (i) considering pollen dispersal as a
vector of gene flow that comes in addition to seed migration
(Klein, Lagache-Navarro & Petit 2017; Robledo-Arnuncio &
Gaggiotti 2017) and (ii) deciphering how the local dispersal
patterns determine the variance of reproductive success and
the effective population size with regard to genetic drift (Gerz-
abek, Oddou-Muratorio & Hampe 2017). Robledo-Arnuncio
& Gaggiotti (2017) and Gerzabek, Oddou-Muratorio &
Hampe (2017) both use molecular marker data to reconstruct
dispersal events and raise conclusions about contemporary
migration rates and/or dispersal kernels. The former is a
methodological study that proposes a novel Bayesian method
to estimate the effective seed and pollen migration rates
among genetically differentiated populations of a landscape.

The method fully exploits population assignment likelihoods
at a contemporary time-scale (i.e. jointly using parent and off-
spring genotypes), building upon Robledo-Arnuncio (2012),
and it explicitly considers genotyping mistakes and null alle-
les, the two main sources of bias when estimating migration
rates. It should thus emerge in the next years as a versatile
method to measure pollen and seed dispersal for various plant
species in human-altered landscapes or fragmented coloniza-
tion fronts. This Bayesian method will also pave the way for
analysing landscape genetic data with more realistic move-
ment models at the contemporary scale. In a case study, Gerz-
abek, Oddou-Muratorio & Hampe (2017) apply parentage
analysis within a recently established and expanding popula-
tion of Pedunculate oak. More than just quantifying the highly
skewed distribution of seed production and reproductive suc-
cess among individuals, the study demonstrates how the long-
distance seed dispersal and the disperser satiation of the scat-
ter-hoarding jays interact with the variations of recruitment
success driven by habitat and largely reshuffle the ranking of
individual trees between seed production stage and seedling
recruitment stage. Fully understanding the mechanisms at
individual and contemporary scales is a long-lasting quest in
evolutionary ecology for those aiming at predicting future
eco-evolutionary dynamics, in particular under the forcing of
global changes or under different management scenarios.
Upscaling the consequences of dispersal mechanisms from
individuals to populations is also central in Klein, Lagache-
Navarro & Petit (2017), which uses simulations to investigate
the determinants of realized hybridization rates. Important
effects of pollen limitation, spatial clustering of a rare species
and fine-scale distribution of individuals were observed in
their individual-based spatially explicit simulations. The study
thus underlines that it is better to analyse, then aggregate,
rather than analyse the aggregate, following Clark et al.
(2011). To this goal, dispersal kernels appeared once again as
a powerful methodology to investigate the interaction between
dispersal processes and spatial configurations, but the question
of putting more reality in kernels for animal- or human-dis-
persed seeds and pollen still deserves important efforts in the
future (Robledo-Arnuncio et al. 2014).
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Fig. 2. Word clouds obtained from
combining all papers contributing to the
special feature issued in 2008 (left) and the
current issue (right). [Colour figure can be
viewed at wileyonlinelibrary.com]
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The last SF about dispersal issued in the Journal of Ecol-
ogy in 2008 examined major advances in dispersal ecology,
with a strong mechanistic focus that pursued modelling com-
plex seed dispersal processes (Bohrer et al. 2008; Carlo &
Morales 2008; Jones & Muller-Landau 2008; Levey, Tewks-
bury & Bolker 2008; Schurr, Steinitz & Nathan 2008; Soons
& Bullock 2008). The word cloud derived from that issue
(Fig. 2a) shows that ‘seed’ (n = 1408), ‘dispers’ (n = 1098),
‘model’ (n = 592), ‘distanc’ (n = 383) and ‘plant’ (n = 367)
were the most frequent words in that issue. The frequency
of the term ‘seed’ was highly correlated with the frequency
of ‘dispers’, ‘releas’ and ‘wind’, which evidences a strong
trend towards mechanistic approaches to understand how
propagules get dispersed, particularly in wind-dispersed plant
species. The overall message of this previous SF highlighted
the need of improving our predictions on how far and how
often organisms move across heterogeneous landscapes by
accommodating key plant features and different sources of
spatial and environmental complexity to our models. Since
then, much progress has been made in combining different
tools and models to gain reliable dispersal estimates, includ-
ing LDD events. The second word cloud (Fig. 2b), obtained
from the contributions comprised in the current SF, shows a
similar set of top-mentioned words: ‘disperse’ (N = 815),
‘specie’ (N = 358), ‘seed’ (N = 357), ‘plant’ (N = 247) and
‘distanc’ (N = 243). The most frequent word (disperse) is
highly correlated with ‘kernel’, ‘distanc’, ‘mode’ and ‘verte-
brate’ showing an increased interest for the study of biotic
dispersal vectors that mobilize propagules. The presence of
‘pollen’, ‘genotype’, ‘popul’ and ‘allel’ in the list of frequent
words also depicts a trend towards demo-genetic impacts of
dispersal and methodologies relying on molecular markers to
trace dispersal events.
Ecological studies have demonstrated that anthropogenic

activities and climate-driven changes impact the probability of
organisms to persist in their current locations and, as a result,
distribution ranges might shift in response to global change
drivers. Yet, the consequences of climate change and anthro-
pic actions in determining the ability of plant populations to
disperse remains poorly quantified. The integration of tools
providing robust measures on dispersal patterns at the local
scale combined with statistical methods that allow us to scale-
up local processes to global patterns is a pending task in dis-
persal ecology. In addition, these approaches should be
extended to the study of communities and biomes where dif-
ferent species become connected through biotic interactions
(Morales-Castilla et al. 2015), some of them instrumental in
providing dispersal services. To forecast the fate of current
biomes in a changing world, future efforts should consider
the integrated effect of multiple interacting species to scale
from the population- and species-levels to the community
level across regional scales.
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