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Ecological interactions have been acknowledged to play a key role 
in shaping biodiversity1,2. Yet a major challenge for evolutionary 
biology is to understand the role of ecological interactions in 
shaping trait evolution when progressing from pairs of interacting 
species to multispecies interaction networks2. Here we introduce 
an approach that integrates coevolutionary dynamics and network 
structure. Our results show that non-interacting species can be as 
important as directly interacting species in shaping coevolution 
within mutualistic assemblages. The contribution of indirect 
effects differs among types of mutualism. Indirect effects are more 
likely to predominate in nested, species-rich networks formed by 
multiple-partner mutualisms, such as pollination or seed dispersal 
by animals, than in small and modular networks formed by intimate 
mutualisms, such as those between host plants and their protective 
ants. Coevolutionary pathways of indirect effects favour ongoing 
trait evolution by promoting slow but continuous reorganization 
of the adaptive landscape of mutualistic partners under changing 
environments. Our results show that coevolution can be a major 
process shaping species traits throughout ecological networks. 
These findings expand our understanding of how evolution driven 
by interactions occurs through the interplay of selection pressures 
moving along multiple direct and indirect pathways.

Coevolution, the reciprocal adaptation resulting from ecological 
interactions, shapes the adaptive peaks of pairs of interacting species 
(Fig. 1a, b). Ultimately, selection driven by ecological interactions 
fuels adaptation in populations3, affects ecosystems4, and shapes the 
responses of ecological assemblages to environmental change2. An 
important challenge in advancing our understanding of how ecological 
interactions shape biodiversity, however, is to determine how coevo-
lution acts when progressing from pairs or small groups of interacting 
species5–12 to species-rich networks2,13–16. In species-rich networks,  
the effects of selection may cascade and produce indirect effects  
(evolutionary changes prompted by species that are not linked directly 
as interacting partners). For example, selection imposed by one polli
nator species may promote evolutionary changes in a plant species, 
which may lead to changes in another pollinator species. Indirect effects 
may change the adaptive landscape (Fig. 1c) and thereby drive  trait 
distributions in biological communities14–17. Nevertheless, the lack of a 
conceptual framework to explore how direct and indirect effects shape 
trait evolution in species-rich networks has hindered progress in our 
understanding of these combined effects.

Here, we introduce an approach that combines evolutionary theory 
and network theory to evaluate how direct and indirect effects shape 
trait evolution in mutualistic networks. Using a single-trait coevolu-
tionary model, we explored how the importance of indirect effects to 
trait evolution is affected by selection driven by mutualistic partners 
and the environment, the additive genetic variance, the slope of the 
selection gradient, and the constraints imposed by other traits that limit 
the occurrence of certain interactions (Methods).

We used the structures of 75 empirical networks to parameterize our 
simulations (Methods). The dataset encompassed six types of mutualism  
categorized into two broad classes. Intimate mutualisms, such as  
myrmecophytes hosting ants and anemones hosting anemonefishes, 
are interactions in which an organism completes at least one life stage 
on a single host. By contrast, multiple-partner mutualisms are those in 
which an individual interacts with multiple partners throughout its life, 
such as pollination by animals, seed dispersal by vertebrates, cleaning 
interactions involving fishes and shrimps, and the facultative protection 
of plants by visiting ants. We focused on intimate and multiple-partner 
interactions because they have been proposed to have disparate effects 
on coevolution2,18.

In mutualistic networks, most species interact with a small subset 
of available partners, which limits the sources of direct evolutionary 
effects (Fig. 2a). These direct effects, however, may cascade through the  
network and generate indirect effects. By combining numerical 
simulations with an analytical approximation, we computed a matrix 
(T-matrix) that describes how selection imposed directly and indirectly 
by mutualisms cascades through multiple pathways, thereby reshaping 
the adaptive landscape (Fig. 2b and Methods). The T-matrix allowed 
us to partition the potential contributions of direct and indirect 
effects to trait evolution in species-rich networks (Methods). Because 
reciprocal selection is a major component of indirect effects, we called 
the T-matrix the coevolutionary matrix. Sensitivity analyses under 
different model assumptions showed that the coevolutionary matrix 
emerges regardless of multiple modelling choices (Supplementary 
Methods).

Indirect effects contributed strongly to the trait evolution of species 
in mutualistic networks. This result occurs because the combined 
weak indirect effects of multiple non-interacting species compensate 
for the fewer stronger direct effects of interacting partners (Fig. 2b). 
Surprisingly, indirect evolutionary effects were stronger in species 
with fewer interactions (specialists) than in highly connected genera
lists (Fig. 2c, d). For example, in a simulation using a species-rich 
seed-dispersal network and assuming strong mutualistic selection  
(<​m> =​ 0.7 ±​ 0.01, Methods), less than 30% of selective effects on 
specialist species (yellow dots; Fig. 2d) were driven by their direct 
partners, whereas the combined effects of non-interacting species 
accounted for approximately 40% of the selective effects on the traits 
of specialists. These simulations varying the level of mutualistic selec-
tion indicated that indirect effects could be ignored only if mutualisms 
were a negligible source of selection (Fig. 3a). Our results suggest that 
coevolution in mutualistic networks may be governed to an unexpect-
edly large extent by species that do not interact directly with each other.

Having shown the potential importance of indirect effects for coevo-
lution within mutualistic networks, we next investigated how the con-
tribution of indirect effects to trait evolution may differ among types 
of mutualism. We used empirical networks of different mutualisms 
to designate which interactions occurred and which did not, but we 
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allowed interaction strengths to evolve in response to trait evolution. 
These interactions connecting species in the network drive the 
direct evolutionary effects, but also create pathways connecting non-
interacting species. Indirect evolutionary effects varied among different 
types of mutualism (general linear model, F5,593 =​ 194.94, P <​ 0.0001; 
Supplementary Table 2), exhibiting greater influence in multiple-
partner mutualisms than in mutualisms involving more intimate 
interactions (Fig. 3b). These differences between types of mutualism 
held after controlling for the effects of species richness (Supplementary  
Table 3) and when using empirical ecological dependences as estimates 
of direct evolutionary effects (Supplementary Methods).

We then evaluated which network patterns favour indirect evolu-
tionary effects (Methods). Multiple-partner mutualisms often form 
nested networks, whereas intimate mutualisms form highly modular 
networks18. Indirect evolutionary effects were weaker in modular  
networks than in species-rich, nested networks (R2 =​ 0.69, 
F1,73 =​ 160.91, P <​ 0.0001; Fig. 3c). An analytical approximation of 
the model using spectral graph theory confirmed that nestedness and 
species richness increase indirect effects by enriching the number of 
pathways connecting species in the network (Supplementary Methods).

In a multispecies network, environmental changes may favour 
evolutionary responses in opposing directions for different species. 
If indirect effects contribute extensively to trait evolution, then these 
opposing indirect effects may spread through the network and create 
conflicting coevolutionary cascades. We therefore evaluated how 
indirect effects may shape evolutionary responses following envi-
ronmental perturbations in mutualistic networks. We ran the model 
until it reached equilibrium and then simulated a long-lasting change 
in environmental selection, such as a sustained change in rainfall, by  
displacing the environmental optimum (Methods).

The perturbations changed the adaptive landscape, which triggered 
changes in the network organization by altering the evolutionary effects 

of interactions and subsequently promoted further trait evolution. 
The greater the indirect evolutionary effects, the longer was the time 
required for a given mutualistic network to reach a new equilibrium 
(R2 =​ 0.71, F1,73 =​ 179.68, P <​ 0.001; Fig. 4a). Thus, indirect effects 
induced long transients19 in the coevolutionary dynamics of multiple- 
partner mutualisms (Fig. 4a). The conflicting indirect effects also 
reduced the rate of directional evolution (R2 =​ 0.69, F1,73 =​ 165.56, 
P <​ 0.001, Fig. 4b). These results held after controlling for the effects 
of species richness (Supplementary Table 4). Thus, the structure of 
multiple-partner mutualisms may slow the response to environmental 
changes while lengthening the cascading effects of the perturbations, 
thereby promoting the endurance of coevolutionary dynamics.

Although indirect effects are a major component of how species 
interactions affect biodiversity, as in the case of trophic cascades20, 
trait-mediated cascades12, and competition21, we are just beginning 
to understand how much indirect effects contribute to evolution in 
species-rich assemblages. Quantifying indirect effects in complex 
networks is a current challenge in many fields of research. Indirect 
effects are a fundamental component of processes affecting popula-
tion genetic structure22, financial markets23, and cultural practices24. 
The framework presented here, combined with appropriate models for 
each system, may contribute to the characterization of indirect effects 
in other complex networks. By introducing this framework, we have 
shown that indirect evolutionary effects12 are a pervasive consequence 
of nestedness and species richness in multiple-partner mutualisms.

Our results on the role of indirect effects in shaping trait evolution 
suggest three major properties of coevolution in mutualistic networks. 
First, these results challenge the view that only intimate mutualisms are 
highly coevolved. Rather, coevolution proceeds differently in different 
types of interaction. In intimate mutualisms, the direct selection 
imposed by the mutual interdependence between partners is expected 
to be strong2,18, whereas the organization of these small networks con-
strains the strength of indirect effects. By contrast, our analysis suggests 
that indirect effects markedly affect trait evolution in multiple-partner 
mutualisms. Thus, selection regimes imposed by multiple-partner 
interactions are the outcome of a complex interplay among conflicting  
selection pressures operating through multiple pathways. This high 
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Figure 1 | Mutualisms, selection, and trait distributions. Hypothetical 
curves describing the distribution of traits for four species in a given 
community in which the environment imposes selection favouring 
particular trait values for each species (θ1, θ2, θ3, θ4). a, In the absence of 
selection imposed by mutualisms, selection favours the mean trait values 
of each species that match the environmental optima ( ∗Z1​ =​ θ1, ∗Z 2 =​ θ2, 
∗Z3​ =​ θ3, ∗Z 4​ =​ θ4). b, Pairwise interactions reshape the adaptive landscape, 

changing the favoured mean trait values for interacting species. c, If 
species are part of a mutualistic network, then the indirect effects provided 
by non-interacting species also play a role in reshaping trait distributions.
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Figure 2 | Direct and indirect effects in networks. a, b, Matrices 
representing a mutualistic network (network 45; Supplementary  
Table 1, see also Methods), with warmer colours indicating stronger 
evolutionary effects of a species (column) on the trait evolution of another 
species (row). a, Mutualistic networks often show few direct evolutionary 
effects (elements of Q-matrix) but (b) numerous indirect effects  
(elements of T-matrix) because multiple pathways connect species.  
c, d, In species-rich networks, specialists (smaller nodes with cooler 
colours) are more affected than generalists (larger nodes with warmer 
colours) by the indirect evolutionary effects of species two or more  
degrees of separation away. Parameters: ϕ =​ 0.2 ±​ 0.01, θi =​ U[0, 10], and 
<​m> =​ 0.7 ±​ 0.01.
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level of integration may provide a mechanism for the emergence of 
community-level trait patterns in mega-diversified mutualisms17.

Second, indirect effects may alter the consequences of environ
mental selective pressures by triggering trait evolution in other species 

within a mutualistic network. In multiple-partner mutualisms, in 
which conflicting indirect effects are likely to be pervasive, the effects 
of environmental change would take longer to diminish than they 
would in intimate mutualisms. Because biological communities are 
continuously affected by perturbations, these results imply that the 
traits of species immersed in species-rich mutualistic networks may 
often be far from equilibrium19, leading to slow but continuous coevo-
lution that will repeatedly reshape selection regimes and species traits 
at a local level.

Third, because interactions are mediated by species traits, trait 
evolution leads to the reorganization of the network, generating eco-
evolutionary feedbacks. The reorganization of the network structure 
as a result of the indirect effects of coevolution may explain why and 
how mutualisms persist amid the turnover of species and interactions 
across space and time25. Conflicting indirect effects, though, may 
lessen the degree and slow the rate at which species respond to the 
rapid environmental change currently driven by human activities26, 
affecting population demography in ways that increase their vulnera-
bility to extinction3,27. If this is true, then the network properties that 
favour direct and indirect evolutionary effects, continuously reshap-
ing species traits under normal conditions, may also threaten these 
same species when the community is subjected to the rapid, human-
driven environmental changes occurring in biological communities 
worldwide.

–2 –1 0 1 2 3
Network structure (PC1)

C
on

tr
ib

ut
io

n 
of

 in
d

ire
ct

 e
ffe

ct
s

0.1

0.2

0.3

0.4

C
on

tr
ib

ut
io

n 
to

 t
ra

it 
ev

ol
ut

io
n

0

0.2

0.4

0.6

0.8

1.0

D
ire

ct
 e

ffe
ct

s
In

d
ire

ct
 e

ffe
ct

s

Mutualistic selection

C
on

tr
ib

ut
io

n 
to

 t
ra

it 
ev

ol
ut

io
n

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1.0

D
ire

ct
 e

ffe
ct

s
In

d
ire

ct
 e

ffe
ct

s

a

b 

c 

Ant
s–

m
yr

m
ec

op
hy

te
s

Ane
m

on
es

–

Ane
m

on
e�

sh
es

Ant
s–

ne
ct

ar
y-

bea
rin

g

plan
ts Clea

nin
g

int
er

ac
tio

ns

Poll
ina

tio
n

See
d

disp
er

sa
l

Figure 3 | Determinants of indirect effects. a–c, Each circle represents 
the mean contribution of indirect effects to trait evolution (n =​ 800 
simulations) parameterized with a given empirical network (n =​ 75 
empirical networks). a, The mean contribution of indirect effects (red 
bars) increases with mutualistic selection. b, After controlling for the level 
of mutualistic selection, the indirect effects varied across mutualisms. 
c, Indirect effects increased along a gradient based on PC1 of a principal 
component analysis (Methods) from small, modular networks (negative 
values) to species-rich, nested networks (positive values). Types of 
mutualism (b, c): blue, ants–myrmecophytes; green, anemones–
anemonefishes; purple, ants–nectary-bearing plants; light orange, cleaning 
interactions; red, pollination; dark orange, seed dispersal.
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Figure 4 | Indirect effects and environmental change. a, Higher 
contributions of indirect effects to trait evolution (least square estimates 
of a general linear model; see Methods) led to longer durations of the 
coevolutionary dynamics triggered by the environmental changes.  
b, Longer coevolutionary dynamics resulted from the contribution of 
indirect effects that slowed the rate of directional adaptive change in the 
mean trait values of interacting species, measured as the mean amount of 
trait change per species per time step. Different colours indicate distinct 
types of mutualism (Fig. 3).
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Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
No statistical methods were used to predetermine sample size. 
Coevolutionary model. We used a coevolutionary model for mutualistic networks 
to simulate the phenotypic evolution of interacting species. This model incorpo-
rates selection gradients into a weighted network framework in which mutualistic 
interactions vary in interaction strength over time. The incorporation of selection 
gradients allowed us to connect trait evolution explicitly with the mean fitness 
consequences of mutualistic interactions. The mean trait evolution of species i is 
described as follows:
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is a compound parameter that affects the slope of the selection gradient and is  
proportional to the additive genetic variance (Supplementary Methods), N is the 
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selection) in shaping the adaptive landscape, and θi is the phenotype favoured by 
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where α is a scaling constant that controls the sensitivity of the evolutionary effect 
to trait matching (α =​ 0.2 in all simulations). The parameter mi is the level of mutua
listic selection, ∑=
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( ) . By varying mi, we can explore how the strength of 

mutualistic selection affects the contribution of indirect effects. The parameter aij 
is an element of A, which is the adjacency matrix of a given mutualistic network 
with N species, and aij =​ 1 if species i and j are a pair of interacting species and  
0 otherwise. Because the mutualisms analysed here involve two sets of species,  
Sa and Sb (for example, pollinators and plants) and because the interactions occur 
only between species from different sets, A has the following form:
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where Na is the number of species of set Sa (for example, pollinators); Nb is the 
number of species of set Sb (for example, flowering plants), N =​ Na +​ Nb, 0 is a 
submatrix in which all elements are zero, and  ×RN Na b is the biadjacency matrix 
that defines a bipartite graph formed by two sets of species. If aij =​ 0 then =q 0ij

t( )  
for any t, and the interaction between species j and species i is a forbidden link.  
A forbidden link is one in which two species cannot interact because, for example, 
traits in one or both species prevent the interaction. We used information on 
empirical networks in our dataset to parameterize the matrix A, see below. As a 
first approximation, we assumed all aij =​ 0 in empirical networks are fixed 
forbidden links. Later we relaxed this assumption allowing interaction rewiring 
due to coevolution (Supplementary Methods). The model is available as a 
MATLAB script upon request.
Dataset. Our dataset included a wide range of terrestrial and marine mutualistic 
networks that vary considerably in their natural history attributes and network 
patterns (see Supplementary Table 1, and the references therein). Interactions 
between anemones and anemonefishes and between myrmecophytes and their 
sheltered ant colonies are examples of intimate mutualisms in which individuals  
create sustained interactions and form small, highly modular networks18. By 
contrast, the cleaning interactions in coral reefs, seed dispersal by vertebrates, 
pollination by animals, and interactions between nectary-bearing plants and 
their protective ants are representatives of multiple-partner mutualisms among 
free-living species in which individuals may interact with dozens or hundreds of 
different partners across a lifetime2,18 and often form species-rich, nested networks. 
For a subset of mutualistic networks (38 networks), we also obtained information 
on the frequency of the interactions. We describe the structural patterns observed 
in these networks in Supplementary Table 1.
Model parameterization and numerical simulations. We used empirical infor-
mation on the 75 mutualistic networks to parameterize the matrix A in numerical 

simulations such that the absence of any observed interactions between two species 
was assumed to represent an evolutionary forbidden link, aij =​ 0. In empirical  
networks, the absence of interactions may represent forbidden links or interactions 
that were not observed owing to the inherent challenges of sampling ecological 
interactions. However, we are not interested in each network but rather in major 
differences in the contribution of indirect effects to coevolution across different 
network patterns. Other model parameters were sampled from statistical 
distributions: Zi

(0) and θi were sampled from uniform distributions with the range 
[0, 10], ϕi was sampled from a truncated normal distribution with a mean ±​ s.d.  
=​  0.2 ±​ 0.01 and bounded between 0 and 1, and the level of mutualistic selection 
for a given species, mi, was sampled from truncated normal distributions with a 
mean ±​ s.d. =​ <​m> ±​ 0.01 and bounded between 0 and 1, where <​m> is the mean 
level of mutualistic selection in the network. We explored how the mean level of 
mutualistic selection affected the dynamics by exploring <​m> ranging from 0.2 
to 0.9 (in increments of 0.1). We performed 100 simulations per combination of 
<​m> (eight different values) and empirical network (75 mutualistic networks), 
for a total of 6 ×​ 104 simulations. Each simulation ended after the species achieved 
asymptotic trait values, which were defined as mean changes in species trait values 
at sequential time steps <​10−6.
Matrix of direct evolutionary effects (Q-matrix). Networks can be represented 
as adjacency matrices in which row and column i represent species i and non-
empty matrix elements depict pairwise interactions (Fig. 2a). In our model, qij

t( ) 
describes the direct evolutionary effects of selection imposed by species j in trait 
evolution of species i (see the Coevolutionary model section in the Methods). 
Consequently, Q describes all the direct evolutionary effects of mutualistic inter-
actions in a network. In all simulations, evolutionary dynamics reached an 
equilibrium at which the trait values and evolutionary effects of species on their 
partners became fixed (Extended Data Fig. 1), leading to a stationary Q-matrix.
Coevolutionary matrix (T-matrix). Our analytical study showed that the 
equilibrium of our coevolutionary model is stable and defined as Z* =​ TΘ, in which 
Z* is an N ×​ 1 vector with the species mean traits at equilibrium, Θ is an N ×​ 1 
vector describing the trait values favoured by environmental selection, and the 
coevolutionary matrix T (Fig. 2b) connects the values favoured by environmental  
selection (Θ) to the fixed trait values (Z*) by means of selection imposed by 
mutualisms. The elements of this matrix indicate the relative contribution of each 
interacting and non-interacting species in the network (columns) to the selection 
gradient shaping trait evolution of a given species (row) in the network (Methods). 
The main diagonal of T describes the effects of environmental selection on trait 
evolution of a given species. Our analytical study showed that the matrix T is 
defined as T =​ (I −​ Q)−1Ψ for any mutualistic network, in which I is the identity 
matrix, Q is an N ×​ N matrix containing the pairwise, direct evolutionary effects 
of mutualistic interactions (equation (2)), and Ψ​ is an N ×​ N diagonal matrix in 
which Ψii =​ 1 −​ mi for any species i. The component (I −​ Q)−1 is the result of the 
multiple pathways connecting species in the network (Supplementary Methods), 
which allowed us to estimate the contribution of indirect effects to trait evolution in 
our simulations. We performed a sensitivity analysis to determine the dependency 
of T on the parameter values and the model assumptions, including the way we 
modelled trait–fitness relationships, selection imposed by the environment, evolu-
tionary effects, and forbidden links. The results were robust regardless of the main 
assumptions of our model. Derivation of the analytical results and details about the 
sensitivity analysis are available in the Supplementary Methods.
Quantification of indirect effects. We related the elements of matrix T to the 
adjacency matrix A to estimate the contribution of indirect effects to trait evolution 
in our simulations. We defined indirect effects as the proportional effect of  
non-interacting species on the trait evolution of a given species. The relative 
contribution of indirect effects to trait evolution in a network was defined as 

∑∑ ∑∑κ= − /
≠ ≠

a t t(1 )
i

N

j i j

N

ij ij
i

N

j i j

N

ij
, ,

  in which tij is an element of matrix T. The relative 

contribution of direct effects was defined as ς =​ 1 −​ κ.
Indirect effects and different types of mutualism. We compared the relevance 
of indirect effects to different mutualisms using simulations parameterized with 
the empirical network structure of different mutualisms. We computed the relative 
contribution of indirect effects to trait evolution, κ, in each simulation (100 
simulations per network and mean level of mutualistic selection, <​m>). We used 
the mean κ for each combination of empirical network and <​m> as the response 
variable and we fitted a general linear model using <​m> and the type of mutualism 
as explanatory variables. We then computed the least squares estimates of the mean 
relative contribution of indirect effects for each type of mutualism, controlling for 
the level of mutualistic selection, as a measure of the contribution of indirect effects 
to evolutionary dynamics in the numerical simulations (Supplementary Table 2).
Indirect effects and network structure. We characterized the network structure 
using four network descriptors. Species richness is the total number of species, 
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(Na +​ Nb). Connectance is the proportion of possible interactions that are actually 
recorded and is represented by C =​ L/NaNb, in which L is the total number of 
interactions. Modularity is the level to which the network is organized into 
semi-independent groups of interacting species. Modularity was quantified 
using the bipartite modularity index QE, which was estimated using the program 
MODULAR under a simulated annealing optimization algorithm28. QE ranges 
between 0 (no modularity) and 1 (high modularity) (see ref. 28 and references 
therein). Nestedness occurs when species in the network interact with a proper 
subset of the partners of more connected species. Nestedness was quantified using 
NODF29. NODF ranges from 0 (no nestedness) to 100 (perfect nestedness). We 
controlled for the confounding effects of species richness, connectance, and hetero
geneity in the number of interactions per species on modularity and nestedness 
using a null model approach30:

=
−Q Q Q
Q

(4a)S
E N

N

=
−N N N
N

1
100

(4b)S
E N

N

where QS(NS) is the standardized estimate for modularity (nestedness) for an 
empirical network, QE(NE) is the raw estimate of modularity (nestedness) for an 
empirical network, and QN(NN) is the mean value of modularity (nestedness) for 
null model networks (n =​ 100 null model networks). We used a null model in 
which the probability of species i of set Sa interacting with a given species j of set 
Sb was Pij =​ 0.5[(ki/Nb) +​ (kj/Na)], where ki(kj) is the number of interactions of 
species i(j)30.

We then explored the relationship between indirect effects and network 
structure. We used a general linear model in which the explanatory variables were 
network identity and the mean level of mutualistic selection <​m>​, which ranged 
from 0.2 to 0.9 (in increments of 0.1). The response variable was the relative con-
tribution of indirect effects to trait evolution. We used this model to obtain least 
squares estimates of the contributions of indirect effects to trait evolution in each 
network.

Metrics that describe network structure often show strong correlations in their 
values. We performed a principal component analysis with the four structural 
descriptors of the 75 mutualistic networks (species richness, connectance, relative 
nestedness, and relative modularity) to combine the structural information 

provided by the network metrics into a single descriptor. The first principal 
component (PC1) contained 56.4% of the variation in the network descriptors 
and was negatively associated with the relative level of modularity (−​0.429) and 
connectance (−​0.398), and positively associated with the relative level of nested-
ness (0.586) and species richness (0.560). We then used simple linear regressions 
to test whether the network structure (scores of PC1) affected the indirect effects  
(the least squares estimates of the contribution of indirect effects in each network). 
We then explored the effect of each network descriptor on the contribution of 
indirect effects to trait evolution (Supplementary Table 5).
Environmental change simulation. We ran 100 simulations for each empirical 
network (parameters: 75 empirical networks; ϕ =​ 0.2 ±​ 0.01, θi =​ U[0, 10], and  
<​m> =​ 0.7 ±​ 0.01). For each simulation we first allowed the system to achieve 
equilibrium, computing the contribution of indirect effects using the T-matrix. 
We then performed perturbations that led to sustained changes in the selection 
imposed by the environment (press perturbations). Press perturbations were 
simulated by changing the phenotype favoured by the environment by an amount 
εi from the θi of each species of the network in each simulation. We sampled εi from 
a uniform distribution [0, 1]. We then ran the simulations until a new equilibrium 
was reached. We tested whether the contribution of non-interacting species to the 
evolutionary dynamics was associated with the mean time to the new equilibrium 
and the rate of directional change. The rate of directional change was computed as 
the mean change in the trait values per species per time step after the perturbation. 
We also performed an additional set of simulations in which we sampled εi from 
a uniform distribution [−​1, 1], which produced similar results (Supplementary 
Methods).
Code availability. All MATLAB and R scripts used in this study are available from 
the corresponding author upon request.
Data availability. The dataset used in this paper is available from the correspond-
ing author upon request.
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1. Modeling coevolution in mutualistic networks

1.1. Model description 

Recently, a set of studies has started to explore evolutionary dynamics in 

mutualistic networks, which are major components of all biologically diverse 

ecosystems. These studies are rooted in distinct modeling approaches, including models 

based on assembly rules15, adaptive dynamics models31,32, genetic population models14, 

individual-based models14, and stochastic16 and deterministic33 network models that 

describe traits as quantitative node states. These studies have allowed us to begin to 

understand how coevolution shapes and is shaped by network patterns, revealing the 

link between evolutionary dynamics and ecological dynamics31,32, the role of linkage 

rules and trait evolution in shaping network patterns14,15, the effects of specific lifestyles 

on evolutionary change16, and the feedback between network structure and trait 

evolution33. In this paper, we move toward a new modeling approach by analyzing how 

natural selection acts both directly and indirectly within assemblages of species. Our 

new modeling approach has two main elements: a coevolutionary model for networks 

based on selection gradients and the analytical derivation of the coevolutionary matrix. 

As previous coevolutionary networks models14,16,33, our model is a time-discrete model 

that describes trait evolution in the context of selection imposed by environment and 

species interactions14,33. However, by using selection gradients in coevolutionary 

network models, our model allows an explicit connection between trait evolution and 

changes in the adaptive landscape. The description of coevolution as the reorganization 

of adaptive landscapes due to species interactions34 leads to the second component of 

our modeling approach, the analytical derivation of the coevolutionary matrix (T 

matrix). The coevolutionary matrix is a matrix that integrates trait evolution, species 

interactions, reciprocal direct and indirect evolutionary effects, and the reorganization of 

the adaptive peaks. This new approach allows an assessment, for the first time, of how 

indirect interactions reshape adaptive landscapes in mutualistic networks and, in doing 

so, (1) contribute to the relentless evolution of interactions, (2) alter the process of 

reciprocal change differently in intimate interactions and multiple-partner interactions, 

(3) change the pace of directional evolutionary change, and (4) affect the reorganization

of mutualisms over time.
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In our model, a local network was formed by N species, each of which was 

represented by a single population. As a first approximation, we assumed short time 

scales, and we studied the coevolutionary dynamics of local assemblages of interacting 

species. Recent studies show that rapid evolution can occur in species-rich mutualisms 

(e.g., Ref. 3), and this assumption allowed us to focus on trait evolution while ignoring 

other aspects of the evolutionary dynamics, such as speciation. Thus, we assumed that 

species richness, N, was fixed and that the population of species i was formed by ni 

individuals. Each individual h of species i was characterized by a single trait value, Zih. 

In nature, Zih may refer to a quantitative trait that mediates the interaction between 

individuals of different species, such as the length of a hummingbird’s bill or a flower’s 

corolla. Alternatively, Zih can be viewed as set of traits evolving together because of 

strong genetic integration35, such as multiple traits in fruits that are also functionally 

associated with each other36. We assumed that Zih affects the fitness benefits derived 

from the mutualistic interactions with individuals of interacting species. In addition to 

mutualism, we also assumed that Zih affects other aspects of fitness of the individuals in 

the environment. Thus, we assumed that Zih was under selection by distinct 

environmental and mutualism selective pressures because the traits involved in 

interactions are always under distinct selective pressures2,37.   

We then defined 𝑍"
($) as the mean value of a single quantitative trait in a given 

species i at time t, 𝑍"
($) 	= 𝑍"(

)*
(+, 𝑛" . In our simulations, we adopted a mean-field 

approach to describe trait values and directly modeled the evolutionary dynamics of 𝑍"
($) 

in a manner similar to classical studies of directional selection38. This assumption 

allowed us to derive a coevolutionary matrix connecting mean species traits to the 

phenotypes favored by environmental selection (see 1.2 Coevolutionary matrix). We 

assumed that the phenotypic variance of 𝑍"
($) , 𝜎/*

0 , is fixed, which is a useful 

approximation for large population sizes. We assumed that 𝑍"
($)shaped the patterns of 

interaction of species i with other species in the network, thus allowing evolutionary 

feedback between traits and patterns of interaction. Evolutionary change in a given time 

step of 𝑍"
($) was derived using the classical equation for phenotypic evolution38: 

Δ𝑍"
($) = ℎ/*

0 𝜎/*
0 3 456*

3/*
          (S1) 
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where ℎ/*
0  is the heritability of trait 𝑍"

($), which was assumed to be constant over time, 𝜎/*
0  

is the phenotypic variance of 𝑍"
($), which was also assumed to be constant through time, 

and 3 456*
3/*

 is the selection gradient. The selection imposed by the mutualisms and 

environment effects may lead to very complex adaptive landscapes in which the 

adaptive peaks vary across time34. We assumed that the adaptive landscape at a given 

time step t is formed by a single adaptive peak, but we incorporated the temporal 

variation in the adaptive peaks, which were continually reshaped by the trait evolution 

of the other species in the network. To do this, we assumed a linear selection gradient 

defined as:  

3 456*
3/*

= 𝜚" 𝑍",9
($) − 𝑍"

($)        (S2) 

where 𝜚" is a scaling constant affecting the sensitivity of 𝑊" to changes in 𝑍"
($),	 and 𝑍",9

($) is 

the mean trait value defining the adaptive peak of the population of species i at time 

step t. We decomposed 𝑍",9
($)  into the trait values favored by environmental and 

mutualistic selection: 

𝑍",9
($) = 𝑞"=

($)>
=,=?" 𝑋"=

($) + 1 − 𝑞"=
($)>

=,=?" 𝜃"
($)       (S3) 

 The coefficient 𝑞"=
($)  is the evolutionary effect of a mutualistic interaction, 

weighting the relative importance of the selection imposed by species j to the selection 

gradient compared with all of other potential selective pressures, 0	 ≤ 𝑞"=
($) ≤ 1. 𝑋"=

($)is the 

mean trait value of species i favored by the selection imposed by individuals of species j. 

The term 1 − 𝑞"=
($)>

=,=?"  weights the relative importance of environmental selection to the 

selection gradient. Environmental selection is the sum of the effects of all selective 

pressures that are not related to mutualisms. Finally, 𝜃"
($) is the mean trait value for 

species i that is favored by environmental selection. By combining equations S1, S2, and 

S3 and considering that ℎ/*
0 = 𝜎FG*

0 𝜎/*
0 , in which 𝜎FG*

0  is the additive genetic variance of 

trait 𝑍"
($), the temporal dynamics of the traits could be described as follows: 

𝑍"
($H,) = 𝑍"

($) + 𝜑" 𝑞"=
($)>

=,=?" 𝑋"=
($) − 𝑍"

($) + 1 − 𝑞"=
($)>

=,=?" 𝜃"
($) − 𝑍"

($)   (S4) 

in which 𝜑"  is a compound parameter 𝜑" = 𝜎FG*
0 𝜚" . We assumed that the trait value 
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favored by environmental selection is fixed over time, 𝜃"$ = 𝜃". We later explored the 

effects of environmental fluctuations on trait evolution (Fig. 4, main text). We also 

assumed that selection imposed by mutualistic partners favors complementarity among 

interacting partners, as in previous coevolutionary models for mutualistic networks14,16. 

Maximal complementarity would occur under extreme phenotypic matching between 

interacting partners. For simplicity, we defined maximal phenotypic matching as 𝑍=
($) =

𝑍"
($); therefore, 𝑋"=

($) = 𝑍=
($), which leads to equation (1) of the main text:

𝑍"
($H,) = 𝑍"

($) + 𝜑" 𝑞"=
($)>

=,=?" 𝑍=
($) − 𝑍"

($) + 1 − 𝑞"=
($)>

=,=?" 𝜃" − 𝑍"
($) (1) 

Using this expression, we can explore how evolutionary effects 𝑞"=
($) vary over

time. Species interactions are often affected by multiple traits of interacting individuals 

of different species. As a result, the evolution of any trait is affected by the evolution of 

other traits that evolve at different rates. We incorporated the consequences of other 

traits in our model by decomposing the relative importance of selection imposed by a 

potential partner j into two components: (i) 𝑒KL /M
(N)K/*

(N) O

 , which is the component of the

selection imposed by species j mediated by trait 𝑍"
($), where 𝛼 describes the sensitivity of

the evolutionary effect of the interaction to trait matching, and (ii) 𝑎"=
($), which is the

component of selection associated with all other traits of i that affect the interaction 

between i and j, 0	 ≤ 𝑎"=
($) ≤ 1. The combination of these two components leads to:

𝑞"=$ = 𝑚"𝑎"=
($) S

TU GM
(N)TG*

(N) O

V*W
(N)S

TU GW
(N)TG*

(N) O
X
W,*YW

(S5) 

where 𝑚" is the level of mutualistic selection and measures the relative importance of all 

mutualistic interactions as selective pressures on 𝑍"
($);	0 ≤ 𝑚" = 𝑞"=$>

=,=?" ≤ 1. As a first

approximation, we assumed that 𝑚" is constant, but our sensitivity analysis showed that 

violating this assumption did not qualitatively affect our main results (see section 1.3). 

We made the simplifying assumption that the genetic covariance between 𝑍"
($) and the

other traits affecting the interaction is negligible, which allowed us to consider 𝑎"=
($) and

𝑒KL /M
(N)K/*

(N) O

as independent components. We also assumed that 𝑍"
($)	evolves at a faster
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rate than all of the other traits affecting the mutualism, which allowed the simplification 

𝑎"=
($) = 𝑎"=. We later explored this assumption and its potential consequences (see section

1.3). Finally, we assumed that traits affecting 𝑎"= exert a barrier effect on the interaction15, 

i.e., allowing interactions to occur (𝑎"= = 1) or not occur (𝑎"= = 0). This assumption did

not affect the main conclusions of this study; see barrier effects in section 1.3. Thus, our

model incorporates the mechanisms of trait matching, 𝑒KL /M
(N)K/*

(N) O

 and trait barriers

(the traits summarized in 𝑎"=) that are likely to govern the ecology and evolution of 

mutualisms15. Combining equations S5 and 1 yields the following equation: 

𝑍"
($H,) = 𝑍"

($) + 𝜑" 𝑚" 𝑎"=
S
TU GM

(N)TG*
(N) O

V*WS
TU GW

(N)TG*
(N) O

X
W,*YW

>
=,=?" 𝑍=

($) − 𝑍"
($) + 1 − 𝑚" 𝜃" − 𝑍"

($)   (S6) 

Thus, 𝑎"= and 𝑒KL /M
(N)K/*

(N) O

 represent the fixed and dynamical components of the 

structure of mutualistic networks, which limit and shape how evolution and coevolution 

can occur in these networks. In equation S6, 𝑎"= = 0 represents a forbidden link, which is 

an interaction that cannot occur39 and is stable over evolutionary timescales. This 

potential interaction is a forbidden link because other traits prevent the interaction from 

occurring regardless of how strong the trait matching is between species 𝑍=
($) and 𝑍"

($).

Alternatively, a potential interaction may have negligible evolutionary effects even if 

other traits allowed the interaction to occur (𝑎"= = 1). For example, a strong mismatch 

between 𝑍=
($) and 𝑍"

($)relative to the matching between i and its other partners would

result in S
TU GM

(N)TG*
(N) O

V*WS
TU GW

(N)TG*
(N) O

X
W,*YW

→ 0, 𝑞"=
($) → 0. In this latter case, the evolutionary effect of

the mutualistic interaction between i and j is functionally negligible. 

In all of the subsequent analyses, we assumed 0 < 𝜑" < 1 and 0 < 𝑚" < 1 for any 

species i. Using equation 1 of the main text as a starting point, we performed numerical 

simulations to study the evolutionary dynamics of the model. The evolutionary 

dynamics converged to equilibrium (Extended Data Fig. 1), regardless the properties of 

the network used to parameterize the model. Then, we characterized the phenotype of 

species i at the equilibrium.  
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We used the simplifying assumption that 𝑞"=
($)  was fixed, leading to 𝑞"=

($) = 𝑞"= .

Under this approximation, the equilibrium is described as: 

𝑍"∗ = 𝑞"=𝑍=∗ + 1 − 𝑞"=>
= 𝜃">

=    (S7) 

For a set of N species, equation S7 can be rewritten in matrix form as follows: 

𝐙∗ = 𝐐𝐙∗ + 𝚿𝚯 = 𝐈 − 𝐐 K𝟏𝚿𝚯 (S8) 

where 𝐙∗ is an Nx1 vector describing the trait values of each species at the equilibrium,	𝐐 

is an NxN matrix in which species are depicted in both rows and columns and nonzero 

elements represent the direct evolutionary effects of the interacting species in the 

columns on the mean phenotypes of the species in the rows, 𝚿 is an NxN diagonal 

matrix in which 𝜓"" = 1 − 𝑚" for any species i, 𝚯 = 𝜃"; 𝜃=; 	𝜃f; 	… ; 𝜃>  is an Nx1 vector 

describing the trait values favored by environmental selection, and I is the NxN identity 

matrix. We investigated the local stability of the model. Equation 1 can be rewritten in 

matrix form as follows: 

𝐙 𝒕H𝟏 = 𝐈 − 𝚽 + 𝚽𝐐 𝒕 𝐙 𝒕 + 𝚽𝚿𝚯 (S9) 

where 𝚽  is an NxN diagonal matrix in which the diagonal elements represent the 

compound parameter 𝜑" for each species i, which measures how rapidly a population 

evolves due to the slope of the selection gradient and the additive genetic variance. We 

assumed that at time step 𝑡 = 𝜏, the system is at equilibrium; thus, 𝐙 𝝉 = 𝐙∗ and 𝐐 𝒕 ≅

𝐐. We performed small perturbations of the trait values of all species, as depicted in the 

Nx1 vector 𝚬 = 𝜀"; 𝜀=; 	𝜀f; 	… ; 𝜀> . The local stability of the system was governed by: 

𝚫𝐙 = 𝐈 − 𝚽 + 𝚽𝐐 𝐄 (S10) 

The matrix 𝐈 − 𝚽 + 𝚽𝐐  has N eigenvalues, and these eigenvalues control the 

stability of the model. The model is stable if all eigenvalues have absolute values less 

than one. If 0 < 𝜑" < 1 and 0 < 𝑚" < 1 for any species i, then the absolute values of all 

eigenvalues of the matrix 𝐈 − 𝚽 + 𝚽𝐐  are less than one. As a consequence, the 

perturbation diminishes, and the equilibrium is stable.  

Next, we determined whether the analytical approximation of the model 

converges to equation S8. Using the simplifying assumption 𝐐 𝒕 = 𝐐: 
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𝐙 𝟏 = 𝐈 − 𝚽 + 𝚽𝐐 𝐙 𝟎 + 𝚽𝚿𝚯 (S11) 

𝐙 𝟐 = 𝐈 − 𝚽 + 𝚽𝐐 𝐙 𝟏 + 𝚽𝚿𝚯 (S12) 

𝐙 𝟐 = 𝐈 − 𝚽 + 𝚽𝐐 𝟐𝐙 𝟎 + 𝐈 − 𝚽 + 𝚽𝐐 𝚽𝚿𝚯 +𝚽𝚿𝚯 (S13) 

For time step 𝜏,  

𝐙 𝝉 = 𝐈 − 𝚽 + 𝚽𝐐 𝝉𝐙 𝟎 + 𝐈 − 𝚽 + 𝚽𝐐 𝒕𝚽𝚿𝚯𝝉K𝟏
𝒕+𝟎  (S14) 

If the traits of all species are under environmental selection (𝑚" < 1 for any 

species i), the leading eigenvalue of 𝐈 − 𝚽 + 𝚽𝐐  is 0 < 𝜆, < 1, implying that 𝜆,
𝒕 	⟶ 0 

for large t, resulting in:  

𝐈 − 𝚽 + 𝚽𝐐 𝝉𝐙 𝟎 → 𝟎 (S15) 

𝐈 − 𝚽 + 𝚽𝐐 𝒕𝚽𝚿𝚯 → 𝐈 − 𝐈 + 𝚽 − 𝚽𝐐 K𝟏𝚽𝚿𝚯𝝉K𝟏
𝒕+𝟎  (S16) 

where 0 is a null vector, and 𝐈 − 𝐈 + 𝚽 − 𝚽𝐐 K𝟏 is the asymptotic sum of all matrices. 

Substituting S16 and S15 in S14 gives the following: 

𝐙 v = 𝐈 − 𝐈 + 𝚽 − 𝚽𝐐 K𝟏𝚽𝚿𝚯 (S17a) 

𝐙(v) = 𝐈 − 𝐐 K𝟏𝚿𝚯  (S17b) 

Thus, the analytical approximation assuming fixed evolutionary effects of the 

model converged to the fixed point predicted in equation S8. We tested whether the 

analytical predictions held for our numerical simulations in which the evolutionary 

effects are not fixed but vary over time until reaching equilibrium (n = 102 simulations 

per parameterization using each of the 75 empirical networks; 𝜑 = 0.2 ± 0.01, 𝜃 = 10, 

and 𝑚 = 0.7 ± 0.01). We calculated the mean absolute difference between 𝐙∗ and 𝐙z , 

where 𝐙∗  is the vector with asymptotic trait values obtained in the numerical 

simulations, and 𝐙z  is the vector with trait values based on the analytical prediction, 

𝐙z = 𝐈 − 𝐐∗ K𝟏𝚿𝚯 , where 𝐐∗ is the matrix of direct evolutionary effects at the 

equilibrium and was obtained at the end of the simulations. The simulations 

corroborated the performance of the analytical approximation: the mean absolute 

difference between the asymptotic trait value of a given species in the numerical 

simulation (𝐙∗ ) and the trait value predicted by equation S10 (𝐙z ) was negligible 

(mean±SD = 6.75×10K~ ± 5.18×10K~, n = 100 simulations for each of the 75 networks). 
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1.2. Coevolutionary matrix 

We used our coevolutionary model to explore how indirect effects affect the 

coevolutionary dynamics. We defined indirect effects as the contributions of non-

interacting species to trait evolution. A non-interacting species is a species that does not 

directly interact with the focal species. We used our analytical result (equation S8) to 

explore the contribution of indirect effects to trait evolution. We analyzed the 

coevolutionary matrix 𝐓 = 𝐈 − 𝐐 K𝟏𝚿 , which describes how mutualistic interactions 

reshape the mean phenotypes of each species in the network by creating links between 

the trait values favored by environmental selection on multiple species (equation S8).  

We explored (1) how mutualisms reshape the trait distributions of interacting 

species and (2) how, in mutualistic networks, the reshaping of trait distributions is 

associated with indirect effects. We used the three scenarios reported in Fig. 1 (main 

text) to illustrate these results. In the first scenario (Fig. 1A), the four species did not 

interact, 𝑚, = 𝑚0 = 𝑚� = 𝑚~ = 0, therefore: 

 𝚿 = 1; 1; 1; 1  (S18a) 

𝐙∗ = 𝜃,; 𝜃0; 	𝜃�; 𝜃~ (S18b) 

𝐓 = 𝐈  (S18c) 

Equation S18c implies that there was no effect of co-occurring species on the trait 

values of any given species. In the scenario in which there were two sets of isolated 

pairwise interactions, there was the potential for effects of interacting species, but no 

indirect effects, on trait evolution (Fig. 1B). At equilibrium, the fixed trait values for the 

species were as follows: 

𝑍,∗ = 𝑞,0∗ 𝑍0∗ + 1 − 𝑞,0∗ 𝜃,     (S19a) 

𝑍0∗ = 𝑞0,∗ 𝑍,∗ + 1 − 𝑞0,∗ 𝜃0     (S19b) 

𝑍�∗ = 𝑞�~∗ 𝑍~∗ + 1 − 𝑞�~∗ 𝜃�     (S19c) 

𝑍~∗ = 𝑞~�∗ 𝑍�∗ + 1 − 𝑞~�∗ 𝜃~     (S19d) 
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S19 produced the following: 

𝑍,∗ =
��O∗ ,K�O�∗ �OH ,K��O∗ ��

,K��O∗ �O�∗
(S20a) 

𝑍0∗ =
�O�∗ ,K��O∗ ��H ,K�O�∗ �O

,K�O�∗ ��O∗
(S20b) 

𝑍�∗ =
���∗ ,K���∗ ��H ,K���∗ ��

,K���∗ ���∗
(S20c) 

𝑍~∗ =
���∗ ,K���∗ ��H ,K���∗ ��

,K���∗ ���∗
(S20d) 

and: 

𝐓 =

,K��O∗

,K��O∗ �O�∗
��O∗ ,K�O�∗

,K��O∗ �O�∗
0 0

�O�∗ ,K��O∗

,K��O∗ �O�∗
,K�O�∗

,K��O∗ �O�∗
0 0

0 0 ,K���∗

,K���∗ ���∗
���∗ ,K���∗

,K���∗ ���∗

0 0 ���∗ ,K���∗

,K���∗ ���∗
,K���∗

,K���∗ ���∗

(S21) 

Therefore, the equilibrium trait values balanced the trait values favored by 

environmental selection and the reciprocity of the coevolutionary process, 𝑞"=𝑞=" . 

However, because the network is formed by two isolated sets of pairwise interactions, 

there was no indirect effect. We then focused on the coevolution in linear networks (also 

called path graphs, Fig. 1C) to explore how indirect effects affected trait evolution in 

species in one of the simplest types of network. At equilibrium, the trait values were 

defined as: 

𝑍,∗ = 𝑞,0∗ 𝑍0∗ + 1 − 𝑚, 𝜃,     (S22a) 

𝑍0∗ = 𝑞0,∗ 𝑍,∗ + 𝑞0�∗ 𝑍�∗ + 1 − 𝑚0 𝜃0     (S22b) 

𝑍�∗ = 𝑞�0∗ 𝑍0∗ + 𝑞�~∗ 𝑍~∗ + 1 − 𝑚� 𝜃�     (S22c) 

𝑍~∗ = 𝑞~�∗ 𝑍�∗ + 1 − 𝑚~ 𝜃~     (S22d) 

We defined the coevolutionary effect as the reciprocity of evolutionary effects: 

 𝑟"= = 𝑞"=∗ 𝑞="	∗  (S23) 

Using this definition and defining 𝑏 = 1

1−𝑟12−𝑟23−𝑟34+𝑟12𝑟34
, the matrix T for the 

linear, four-species network was as follows: 
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𝐓 =

𝑏 1 − 𝑚, 1 − 𝑟0� − 𝑟�~ 𝑏 1 − 𝑚0 𝑞,0∗ 1 − 𝑟�~ 𝑏 1 − 𝑚� 𝑞,0∗ 𝑞0�∗ 𝑏 1 − 𝑚~ 𝑞,0∗ 𝑞0�∗ 𝑞�~∗
𝑏 1 − 𝑚, 𝑞0,∗ 1 − 𝑟�~ 𝑏 1 − 𝑚0 1 − 𝑟�~ 𝑏 1 − 𝑚� 𝑞0�∗ 𝑏 1 − 𝑚~ 𝑞0�∗ 𝑞�~∗
𝑏 1 − 𝑚, 𝑞0,∗ 𝑞�0∗ 𝑏 1 − 𝑚0 𝑞�0∗ 𝑏 1 − 𝑚� 1 − 𝑟,0 𝑏 1 − 𝑚~ 𝑞�~∗ 1 − 𝑟,0

𝑏 1 − 𝑚, 𝑞0,∗ 𝑞�0∗ 𝑞~�∗ 𝑏 1 − 𝑚0 𝑞�0∗ 𝑞~�∗ 𝑏 1 − 𝑚� 𝑞~�∗ 1 − 𝑟,0 𝑏 1 − 𝑚~ 1 − 𝑟,0

	(S24) 

We named matrix T the coevolutionary matrix because the pervasive role of 

reciprocal effects affecting all of the elements of matrix T. The role of reciprocal effects 

on trait evolution held for both simple and complex network structures because species 

are connected by direct or indirect interactions in any connected network. For example, 

in the linear network studied here (Fig. 1C), species 1 and species 3 do not interact. 

However, element 𝑡,�, which describes the effects of species 3 on species 1, was nonzero 

if the evolutionary effects of species 3 on species 2, 𝑞�0∗ , and of species 2 on species 1, 𝑞0,∗ , 

were nonzero. The evolutionary effect of species 3 on species 1 was indirect in the sense 

that the selective pressures of species 3 on species 2 changed the evolutionary 

consequences of the selection imposed by species 2 on species 1. Thus, the indirect effect 

was a consequence of pathways linking non-interacting species in the network.  

The coevolutionary matrix strongly differed from the structure of selection imposed 

by direct interactions, as can be observed through from visual inspection (Fig. 2A). This 

difference was also illustrated by the matrix spectra of both matrices (Fig. S1).  
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Figure S1. The matrix spectrum is the set of eigenvalues of a given matrix, which are 
represented by density functions. The set of eigenvalues provides information on the 
structure of the matrix; two matrices that strongly differ in their spectra also strongly 
differ in their structure40. The matrix spectra show how the structure of selection 
imposed by direct interactions (green curve) strongly differed from the coevolutionary 
matrix (purple curve), which contains the effects of interacting species and the indirect 
effects of non-interacting species on trait evolution. The simulation was parameterized 
with data on a seed dispersal network in Spain (network 45, Supplementary Table 1) 
and 𝑚 = 0.7 ± 0.01. Similar results held for the other mutualistic networks.  

We performed an analytical approximation of the coevolutionary model to 

understand how the effects of interacting and non-interacting species in reshaping the 

adaptive peaks of the component species of the network were related to the structure of 

selection imposed by direct interactions and its indirect effects. This analytical 

approximation held for any network structure. We assumed that 𝐐∗  can be 

approximated by 𝐐 . This assumption holds if trait values are near the equilibrium 

and/or if evolution does not strongly affect the evolutionary effects of mutualistic 

interactions on trait evolution. This assumption allowed us to compute the cascading 

evolutionary effects occurring in the network by means of powers of matrix 𝐐, in which 

𝐐𝜻 is the 𝜁th-power of Q. The matrix 𝐐𝜻 has a direct network interpretation: If Q defines 

a weighted network – as in our case, where the weights represent the direct evolutionary 
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effects between interacting species – the elements of 𝐐𝜻  describe the effects of all 

pathways of length 𝜁 that connect pairs of species in the network. A pathway (or a walk) 

is any sequence of nodes (species) and links (interactions), which are distinct or 

indistinct, starting and ending with nodes. The pathway length, 𝜁, is the number of 

times that links (distinct or not) were used as part of the pathway. For example, 𝑞"=0  is an 

element of 𝐐𝟐 and 𝑞"=0 > 0 if there is at least one pathway of length two that connects 

species i and j with the form 𝑞"f𝑞f= , where 𝑞"f > 0, and 𝑞f= > 0. Accordingly, 𝑞"=�  is a 

nonzero element of 𝐐𝟑	if there is at least one pathway with the form 𝑞"f𝑞f�𝑞�= in which 

𝑞"f > 0, 𝑞f� > 0, and 𝑞�= > 0, and so on. 

Because the traits are under environmental selection, with 𝑞"=∗ < 1>
=  for any species 

i, the real component of the leading eigenvalue of Q, 𝜆𝐐, , is bounded (0 < 𝜆𝐐, < 1), and 

the following equality holds: 

𝐐� + 𝐐𝟏 + 𝐐𝟐 + 𝐐𝟑 + ⋯+ 𝐐� = 𝐐𝜻�
�+� = 𝐈 − 𝐐 K𝟏  (S25) 

where 𝐐𝟎 = 𝐈. Therefore, 𝐈 − 𝐐 K𝟏 describes the sum of the effects of all coevolutionary 

pathways of all lengths connecting any pair of species in the network. The 

coevolutionary matrix 𝐓 = 𝐈 − 𝐐 K𝟏𝚿  combines in a single descriptor the effects of 

interacting species, the indirect effects of non-interacting species, and the relative 

relevance of environmental selection as a driver of phenotypic evolution (𝐐𝟎𝚿). Note 

that the equation 𝐙∗ = 𝐈 − 𝐐 K𝟏𝚿𝚯 (eq. S8) is similar to the equation describing the Katz 

centrality, 𝐊 = 𝐈 − ϑ𝐖 K𝟏𝟏 , (see Ref. 41) in which 𝟏	 is an all-ones vector, W is an 

adjacency matrix and ϑ is a scalar 0 < ϑ < ,
��

, in which 𝜆� is the leading eigenvalue of

W. The similarity is a consequence of both equations being based in a geometric series of

matrices. Thus, the trait values in the equilibrium in the coevolutionary model are

proportional to Katz centralities if (i) all values of mutualistic selection are identical to all

species, (ii) 𝐐 = ϑ𝐖, and (iii) all elements of the vector 𝚿𝚯 are identical.

1.3. Sensitivity analysis of the coevolutionary matrix 

We used analytical approximations and numerical simulations to study how 

different multiple model assumptions affect the emergence of the coevolutionary matrix, 
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T, through the relationship 𝐙∗ = 𝐓𝚯.  

Environmental selection: The equality 𝐙∗ = 𝐓𝚯  holds only if 𝑚" < 1  for any 

given species i in the network. If there is no environmental selection, 𝑚" = 1, the trait 

values depend on the initial condition and network structure. In this scenario, if there 

are pathways connecting all pairs of species in the network, then all species traits 

converge to the same trait value at the equilibrium, 𝑍∗. For large networks, this trait 

value at equilibrium was defined as 𝑍∗ = 𝑍� + 𝜀� , where 𝑍�  is the average of the 

mean trait values for all species at 𝑡 = 0, and 𝜀� is the effect of the network structure on 

shaping the coevolutionary dynamics ( 𝜀� = 0.68 ± 0.54 , estimated using a set of 

numerical simulations (simulation parameters: n = 102 simulations per empirical 

network, 75 empirical networks; 𝜑 = 0.2 ± 0.01 , 𝑚" = 1  for any species i). Thus, 

phenotypes at equilibrium were not related to environmental optima. If the network is 

formed by disconnected groups of interacting species (components), then this result 

holds for each group of interacting species. Therefore, the coevolutionary matrix T 

emerges only in the scenario in which traits affecting mutualisms are also affected by 

other selective pressures. 

 Fixed environmental and mutualistic selection: We assumed that the 

proportional contributions of mutualistic selection and environmental selection to the 

selection gradient were fixed at 𝑚" and 1 − 𝑚", respectively. However, it is likely that the 

relative contributions of selective pressures imposed by mutualisms and the 

environment vary with the phenotypic distance of the population from alternative 

adaptive peaks. For example, if a population has diverged too far from the trait value 

favored by environmental selection, one might expect that the environment would 

increase in importance as a source of selective pressures. We explored the consequences 

of violating the assumption of fixed contributions of environmental and mutualistic 

selection on the emergence of the coevolutionary matrix. 

 We developed an alternative version of the model in which the strength of 

mutualistic selection, 𝑚"  varied with time, decaying with the distance between the 

current mean trait value of a population and the trait value favored by environmental 

selection, 𝜃" , in such way that 𝑚"
$ = 𝑒K� /*

(N)K�*
O

, where c is a scaling constant. In this 

version of the model, environmental selection was defined as 1 − 𝑒K� /*
(N)K�*

O

. As in 
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section 1.2, we tested whether the asymptotic trait values of the simulations, Z∗, were 

reproduced by the analytical prediction, 𝐙z = (𝐈 − 𝐐)K𝟏𝚿𝚯. We performed a new set of 

numerical simulations (simulation parameters: n = 102 simulations per empirical 

network, 75 empirical networks; 𝜑 = 0.2 ± 0.01, 𝜃" = 𝑈[0,10], 𝑐 = 1). We used 𝐐 = 𝐐∗ 

and 𝚿 = 𝚿∗ to compute 𝐙z . 𝚿∗ is an NxN diagonal matrix in which 𝜓"" = 1 − 𝑚"
∗ for any 

species i, and 𝑚"
∗ is the level of mutualistic selection at equilibrium. We compared the 

mean absolute difference between 𝐙∗  and 𝐙z  to investigate whether the analytical 

prediction holds if environmental selection and mutualistic selection were not fixed. The 

simulations suggested that the assumption of a fixed contribution of mutualism and 

environment to selection is not crucial for the emergence of the coevolutionary matrix 

(the mean absolute difference between 𝐙∗ and 𝐙z  was 8.44×10K¡ ± 4.33×10K~).   

Evolutionary effects of mutualisms: We showed in section 1.2 that the equality 𝐙∗ =

𝐓𝚯 held for fixed evolutionary effects, 𝑞"=$ = 𝑞"= (analytical result), and for evolutionary 

dependences that evolve across time following equation 1 (numerical simulations). We 

also performed an additional set of simulations (parameters: n = 102 simulations per 

empirical network, 75 empirical networks; 𝜑 = 0.2 ± 0.01 , 𝜃" = 𝑈[0,10] , and 𝑚 =

0.7 ± 0.01) in which we changed the definition of 𝑞"=	$  to: 

𝑞"=
($) = 𝑚"

V*M /M
(N)K/*

(N) T�

V*W /W
(N)K/*

(N) T�X
W¢�,WY*

(S24) 

We compared the mean absolute difference between 𝐙∗  and 𝐙z  to investigate 

whether the analytical prediction for trait values ( 𝐙𝑬 ) reproduces the results of 

numerical simulations 𝐙∗ under this alternative definition of evolutionary effects. We 

estimated 𝐙𝑬 as 𝐙z = (𝐈 − 𝐐∗)K𝟏𝚿𝚯. The simulations corroborated the performance of 

the analytical approximation. The mean absolute difference between 𝐙∗  and 𝐙z  was 

1.2×10K� ± 6.0×10K�(mean ± SD). Hence, the equality 𝐙∗ = 𝐓𝚯 holds whether assuming 

fixed evolutionary effects (analytical approximation), time-dependent Gaussian effects 

of trait matching on evolutionary effects (baseline simulations), or time-dependent linear 

effects of trait matching (these simulations). Therefore, 𝐙∗ = 𝐓𝚯 was not a consequence 

of the particular functional form chosen for the evolutionary effects in the baseline 

simulations.  
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Barrier effects of other traits: We modeled the implicit effects of other traits as 

barrier effects that allow the interactions to occur, 𝑎"= = 1, or prevent the interaction 

from occurring, 𝑎"= = 0 . However, in addition to barrier effects, traits might exert 

quantitative effects on selection that affect the evolution of other traits, such as Z. For 

example, in plant-frugivore interactions, different color patterns can attract distinct 

frugivores at different rates42, thereby affecting fruit consumption and selection on other 

fruit traits. Quantitative effects can be modeled using matrix A and allowing 𝑎"=  to 

assume any quantitative (and positive) value. Equation 2 (main text), however, 

guarantees that the elements of Q are bounded between zero and the level of mutualistic 

selection of each species. Under the assumption of environmental selection, all 

eigenvalues of Q are less than one, implying that 𝐙∗ = 𝐓𝚯 holds even if the elements of 

A are quantitative. This analysis, however, did not address the problem of the changes 

in the barrier effects across time. Therefore, we subsequently investigated the scenarios 

in which the barrier effects leading to forbidden links are not fixed. 

Fixed forbidden links: We assumed that forbidden links are fixed across time, 

which allowed us to explore the effects of network structure on coevolutionary 

dynamics. This assumption implies that other traits that prevent the interaction from 

occurring are evolving at slower rates than 𝑍. However, this model decision implies that 

no interaction rewiring occurs. Mismatched interactions might become functionally 

zero, 𝑞"=
($) → 0 , where species i has alternative partners. Nevertheless, no novel

interaction emerged, and specialists interacted only with their partners, regardless of the 

level of mismatching in the interaction.  

We explored whether the assumption of fixed forbidden links is needed for the 

emergence of the coevolutionary matrix by simulating an alternative version of our 

coevolutionary model with a single modification: at each time step, there was a 

probability that one species would show an interaction switch due to adaptive 

rewiring43. The interaction switch simulated, at the population level, the effects of the 

propagation of new traits within the population. These traits were not modeled 

explicitly, but they allowed partner assemblages of species to evolve, changing 

forbidden links. We simulated the interaction switch using an algorithm divided into 

five steps.  

(1) At each time step, there was a probability 𝑝« of one species in the network

WWW.NATURE.COM/NATURE | 16

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature24273



	

switching interactions.  

(2) If so, species i was randomly selected.  

(3) We set 𝑎"= = 0 and 𝑞"=
($) = 0 if the interaction with species j had the smallest 

evolutionary effect on species i among all interacting partners of i.  

(4) We then set 𝑎"f = 1, 𝑞"f
($) = 𝑚"𝑎"f

STU GWTG*
O

V*¬STU G¬TG*
OX

¬,¬Y*

 , if  

 (i) species k was a potential partner of species i, e.g., if species i was a 

fruiting plant, and species k was a frugivore;  

 (ii) there was a forbidden link before the interaction switch that prevented 

the interaction between species k and species i from occurring, 𝑎"f = 0;  

 (iii) 𝑍f − 𝑍"  was the smallest trait difference between 𝑍" and all potential 

partners of i that did not currently interact with species i;  

 (iv) 𝑍f − 𝑍" < 𝑍= − 𝑍" , if this inequality did not hold, then no rewiring 

occurred; and 

 (v) if rewiring occurred, and 𝑎=� = 0>
�+, , then species j was reconnected 

to the network by selecting from among all potential partners the one for which the trait 

difference was minimal, as in item (iii) of step (4). 

We explored whether the definition of the coevolutionary matrix held in 

simulations that did not assume fixed forbidden links. We tested three distinct values of 

𝑝« , 𝑝« = {10K0, 10K�, 10K~}. We performed 100 simulations for each combination of 𝑝« 

and empirical network (parameters: n = 102 simulations per empirical network, 75 

empirical networks; 𝜑 = 0.2 ± 0.01 , 𝜃" = 𝑈[0,10] , and 𝑚 = 0.7 ± 0.01) . We 

computed the mean absolute difference between 𝐙∗  and 𝐙z  and estimated 𝐙𝑬  as 𝐙z =

(𝐈 − 𝐐∗)K𝟏𝚿𝚯. Then, we computed the mean value of the mean absolute difference 

between 𝐙∗ and 𝐙zfor all simulations using the same value 𝑝« and empirical network v. 

The simulations corroborated the performance of the analytical approximation even 

without assuming fixed forbidden links: 𝑑9¬,°  was always minimal [ 1.4×10K¡ ±

4.9×10K²  (mean ± SD)] regardless of the value of 𝑝« . Thus, the equality 𝐙∗ = 𝐓𝚯 held 

regardless of the assumption of fixed forbidden links. 

Fitness function: There are multiple ways of modeling trait matching and its fitness 

consequences. For example, Nuismer et al.44 explicitly modeled the fitness function of 
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each individual, whereas our approach modeled the selection gradients. Combining 

individual-based modeling and analytical approximation, Nuismer et al.14 modeled how 

the fitness of an individual animal with phenotype 𝑍"( varied with the phenotype 𝑍=³ of 

a single potential plant partner and environmental selection as: 

𝑊"( /*´
= 𝑒Kµ* /*´K�* O 1 + 𝜉"𝑒KL /*´K/MW

O
    (S26) 

where 𝑊"( /*´
 is the fitness of individual h of species i, 𝑍"(  is the phenotype of 

individual h, 𝑍=f  is the phenotype of individual k of species j, 𝛾"  and 𝛼  are scaling 

constants that describe the strength of environmental and mutualistic selection, and 𝜉" 

measures the relevance of mutualisms for the fitness of species i. Under the assumption 

of weak selection favoring trait matching and assuming, without lack of generality, that 

species i is an animal species in a plant-animal mutualistic network, equation S26 led to 

the following equation, which describes the change in the mean trait value of species i at 

each time step: 

∆𝑍" = 𝜎FG*
0 0L¹*

,H¹*
𝑓=𝑍=

>»
=+, − 𝑍" + 2𝛾¼ 𝜃¼," − 𝑍" + 𝛿"   (S27) 

where 𝜎FG*
0  is the additive genetic variance of trait Z of species i, 𝑓=  is the relative 

frequency of individuals of plant species j among all plant species, 𝛾" = 𝛾¼  for any 

species i, and 𝛿" is the change in the mean trait of species i due to genetic drift. The 

above model assumes that any individual of any animal species can interact with any 

individual of any plant species, i.e., there are no forbidden links. By incorporating 

forbidden links due to the effects of other traits, and under the simplifying assumptions 

that 𝛾¼ = 𝛾 for all of the species in the network, we derived the equation describing the 

mean change of a given species i in the network: 

∆𝑍" = 𝜎FG*
0 0L¹*

,H¹*
𝑎"=𝑓=𝑍=>

=+, − 𝑍" + 2𝛾 𝜃" − 𝑍" + 𝛿"   (S28) 

where 𝑎"= is an element of the adjacency matrix, and 𝑎"= = 0 if species i and j are 

from distinct sets (animals or plants, for example) or if there is a forbidden link. Under 

the notation of our model, 

𝑍"
($H,) = 𝑍"

($) + 𝜎FG*
0 0L¹*

,H¹*
𝑎"=𝑓=𝑍=

($)>
=+, − 𝑍"

($) + 2𝛾 𝜃" − 𝑍"
($) + 𝛿" (S29) 

Noting that 𝑎"=𝑓= = 1>
=+, , 
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𝑍"
($H,) = 𝑍"

($) + 𝜎FG*
0 0L¹*

,H¹*
𝑎"=𝑓= 𝑍=

($) − 𝑍"
($)>

=+, + 2𝛾 𝜃" − 𝑍"
($) + 𝛿" (S30)

Equation S30 led to equation 1 in the main text, assuming the parameter equalities 

2𝛾 = 𝜚" 1 − 𝑞"=$>
=,=?"  and 0L¹*

,H¹*
𝑎"=𝑓= = 𝜚"𝑞"=$  and that genetic drift had a negligible effect, 

𝛿" = 0: 

𝑍"
($H,) = 𝑍"

($) + 𝜑" 𝑞𝑖𝑗
(𝑡)>

=,=?" 𝑍=
($) − 𝑍"

($) + 1 − 𝑞"=
($)>

=,=?" 𝜃" − 𝑍"
($) (1),	

By mapping a different fitness function than the one used to derive the 

coevolutionary matrix, we showed that the coevolutionary matrix is not a consequence 

of the specific way we modeled the fitness consequences of trait matching to 

mutualisms. Instead, the coevolutionary matrix emerged under different modeling 

approaches. 

Compound parameter 𝜑" : The compound parameter 𝜑"  controls how rapidly 

phenotypes change in response to the selection gradient. In our analytical 

approximation, the 𝜑" values did not affect the emergence of the coevolutionary matrix. 

However, this result is a consequence of assuming that the matrix Q is fixed. In the 

numerical simulations of our coevolutionary model, 𝑞"=$  evolved with trait matching. If 

there were more than two species (see section 2 for the pairwise scenario), the 𝜑" values 

affected the specific trait values at the equilibrium and, consequently, the elements of Q. 

However, changes in the specific values of Q invalidate only the relationships 𝐓 =

(𝐈 − 𝐐)K𝟏𝚿 and 𝐙∗ = 𝐓𝚯 if the leading eigenvalue of Q is equal to one. Because the 𝜑" 

values did not affect the eigenvalues of Q, the relationships supporting the 

coevolutionary matrix held regardless of the values of 𝜑". 

2. Indirect effects and different types of mutualisms

We first computed the mean contribution of indirect effects to trait evolution for 

each combination of empirical network and level of mutualism selection, which varied 

from 0.2 to 0.9 (in increments of 0.1). We then fitted a general linear model (GLM) using 

JMP 9.0 to investigate whether types of mutualism vary in terms of the contribution of 

indirect effects to trait evolution. In this GLM, the response variable was the relative 

contribution of indirect effects, and the explanatory variables were the type of 
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mutualism (coded as six different types of mutualism, Fig. 3B) and the mean level of 

mutualistic selection. Although, we reported the P-values in the summary of the model’s 

results, P-value estimates in numerical simulation studies do not provide much 

information45, and we were more interested in the F-values and least-squares estimates. 

The higher the level of mutualistic selection, the higher was the contribution of indirect 

effects to the trait evolution (least squares estimate: 0.691 ±0.01 , mean ± SE, 

Supplementary Table 2). After controlling for the level of mutualistic selection, the 

relative contribution of indirect effects to trait evolution varied among the different 

types of mutualisms (Supplementary Table 2). We identified three groups of mutualistic 

networks that were statistically distinct when comparing the relative contribution of 

indirect effects to trait evolution (Tukey HSD test). The first group was formed by all of 

the multiple-partner interactions in the dataset: plant-seed disperser interactions (MLS 

estimate: 0.392 ±0.005 ), plant-pollinator interactions (0.383 ±0.004 ), cleaner-client 

interactions (0.377 ±0.012 ), and plants that bear nectaries and protective ants 

(0.372±0.010). The other two groups were formed by the other two types of intimate 

mutualism: anemone-anemonefish interactions (0.232±0.006) and myrmecophytes and 

protective ants (0.178±0.008). 

The mutualisms varied markedly in their species richness. We tested whether the 

differences in the contribution of indirect effects to trait evolution held after controlling 

for differences in species richness. We performed a second GLM using species richness 

as an additional factor. We detected a small effect of species richness on the contribution 

of indirect effects to coevolutionary dynamics (MLS estimate: 6.35×10K~ ± 6.46×10K¡, 

Supplementary Table 3), but after controlling for the effects of species richness, the same 

patterns held. The level of mutualistic selection positively affected the contribution of 

indirect effects to trait evolution (MLS estimate: 0.691 ± 0.10, Supplementary Table 3). 

Accordingly, after controlling for the effects of species richness and the level of 

mutualistic selection, mutualisms could be grouped into the same three statistically 

distinct groups (Tukey’s HSD test): (1) multiple-partner mutualisms: plant-seed 

disperser interactions (MLS estimate: 0.387 ±0.004 ), plant-pollinator interactions 

(0.371±0.004), cleaner-client interactions (0.383±0.012), and plants that bear nectaries 

and protective ants (0.362±0.009), (2) anemone-anemonefish interactions (0.261±0.007), 

and (3) myrmecophytes and protective ants (0.199±0.007). 
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 We used a subset of the empirical networks to verify the result that multiple-

partner mutualisms show higher contributions of indirect effects to trait evolution than 

intimate mutualisms. This subset was formed by 38 networks of three distinct 

mutualisms (plant-seed disperser, n = 13 networks; plant-pollinator, n = 18 networks; 

and myrmecophyte-ant interactions, n = 7 networks) for which we had empirical 

quantitative information on the ecological dependences among species. We did not run 

simulations of the coevolutionary model in this analysis. Instead, we assumed that the 

level of direct selection imposed by a given partner was a function of the frequency of 

the interactions and the level of mutualistic selection, 𝑚": 

𝑞"= = 𝑚"
°*M
°*WX

W¢�
,       (S.31) 

where 𝑣"= is the number of recorded interaction events between individuals of species i 

and j in the empirical studies. Because 0 < 𝑚" < 1 for any species i, all eigenvalues of Q 

were less than one, and consequently, T-matrix could be estimated using equation S18. 

In a given simulation, we randomly sampled 𝑚" from a normal distribution, 𝑚 ± 0.01 

for any species i in the network, and then estimated T-matrix using equations S8 and 

S31. Subsequently, we computed the contribution of indirect effects to trait evolution 

using T. We repeated this algorithm 100 times for each combination of mean mutualistic 

selection, 𝑚 , and network. We varied the mean level of mutualistic selection, 𝑚 , from 

0.2 to 0.9 (in increments of 0.1), yielding 800 simulations per network. We then 

computed the mean contribution of indirect effects per network using this ensemble of 

800 networks. We used this mean estimate as the response variable in a GLM, with the 

type of mutualism used as the explanatory variable. Again, multiple-partner mutualisms 

showed higher contributions of indirect effects (MLS estimates: plant-seed disperser 

interactions = 0.399±	0.011  and plant-pollinator interactions = 0.391±	0.009 ) than 

intimate mutualisms (interactions among myrmecophytes and protective ants 

=0.183	±	0.015, F2,35 = 83.70, P < 0.0001 ). 

 

3. Indirect effects and network structure 

 Our analysis showed that the first principal component (PC1) was positively 

associated with the contribution of indirect effects to coevolutionary dynamics (Fig. 3C). 

For our baseline simulations, we computed the mean contribution of indirect effects per 
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network (Fig. 3). We then explored the effects of each of network metric on the 

contribution of indirect effects to trait evolution using simple linear regressions. We 

corroborated the results that the contribution of indirect effects to trait evolution was 

positively associated with species richness and nestedness and negatively associated 

with connectance and modularity (Supplementary Table 5).   

We then performed an analytical approximation to investigate how network 

structural pattern affects the relative contributions of interacting and non-interacting 

species to trait evolution in mutualistic networks. We focused on how indirect effects 

affect the trait evolution of an animal species i in a plant-animal mutualistic network. 

However, the results can be directly applied to any species in a mutualistic network 

with a bipartite structure. Our analytical results and numerical simulations suggested 

that the effects of mutualistic species on evolution and coevolution in the network can be 

described by direct and indirect evolutionary effects, as described by equation S25:  

𝐈 − 𝐐 K𝟏 = 𝐐� + 𝐐𝟏 + 𝐐𝟐 + 𝐐𝟑 + ⋯+ 𝐐� = 𝐐𝜻�
�+�    (S32) 

We then analyzed how the network structure can increase the contribution of indirect 

effects to the trait evolution of species i. We made the following simplifying 

assumptions: 𝑚" = 𝑚  for all species in the network, and 𝑁¼  and 𝑁Â  are large. We 

computed the effect of species j on species i through all of the pathways connecting 

species j to species i: 

𝑡"= = 1 − 𝑚 𝑞"=
��

�+�         (S33)

We approximated 𝑞"=
�  by noting that on average, the expected effect of a given

pathway is 𝑞 � , where 𝑞  is the mean evolutionary effect of a mutualistic interaction. 

Thus, the expected number of pathways of length 𝜁 connecting species i to j as 𝑛"=
�  is:

𝑞"=
� = 𝑛"=

� 𝑞 �          (S34)

The expected number of pathways connecting species in a network depends on 

the structure of the adjacency matrix A. The number of pathways connecting species in a 

network increases with the pathway length; this phenomenon is called pathway 

proliferation46: 

𝑛"=
� = 𝑎𝜆¼

�          (S35)
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where 𝜆¼  is the leading eigenvalue of the binary adjacency matrix and depends on 

network structure (see below), and 𝑎 = Ã
�Ä>Ä>Å

. Substituting S35 into S34 yields: 

𝑞"=
� = Ã

�Ä>Ä>Å
𝜆¼ 𝑞 �              (S36) 

 In our simulations, the effects of pathways on trait evolution converged, 

implying that increasing the number of pathways, 𝜆¼
� , did not compensate for the decay 

of evolutionary effects with pathway length, 𝑞 � . In our mean-field analytical 

approximation, this convergence implied: 

𝜆¼ 𝑞 < 1.          (S37) 

 In this mean-field analytical approximation, this condition for convergence holds 

if mutualistic selection is weak or if the network is sufficiently connected (see section 

3.1). We searched for differences in the contributions made by other species in the 

network to the trait evolution of animal species i. To do so, we focused on the 

contributions of two plant species: plant species j interacts with animal species i, 

whereas plant species k does not interact with animal species i. Because the structure is 

bipartite, only odd pathways, i.e., pathways with an odd number of links, would 

contribute to the evolutionary effects of plant species on any given animal species. 

Under the assumptions 𝑚" = 𝑚 and 𝜓"" = 1 − 𝑚 for any species i, the expected effect of a 

given plant species j that directly interacts with species i on species i is:  

𝑡"= = 1 − 𝑚 Ã
�Ä>Ä>Å

𝜆¼
0"K, 𝑞 0"K,�

"+,      (S38) 

 As a consequence of 𝜆¼ 𝑞 < 1,  

𝑡"= = 1 − 𝑚 Ã
�Ä>Ä>Å

�Ä �
,K�Ä

O � O         (S39) 

 Accordingly, the expected effect of a given plant species k that does not directly 

interact with species i is:  

𝑡"f = 1 − 𝑚 Ã
�Ä>Ä>Å

𝜆¼
0"K, 𝑞 0"K,�

"+0      (S40a) 

𝑡"f = 1 − 𝑚 Ã
�Ä>Ä>Å

�Ä �
,K�Ä

O � O − 𝜆¼ 𝑞      (S40b) 

 We explored how the differences between 𝑡"= and 𝑡"f vary with 𝜆¼. We computed 

the ratio between the two contributions: 
$*W
$*M
= 𝜆¼

0 𝑞 0         (S41) 
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 For small leading eigenvalues, the contribution of a given plant species j that 

interacts with species i to the trait evolution of species i is much higher than the 

contribution of a plant species k that does not interact with species i. As the leading 

eigenvalue increases, the ratio between the contributions of interacting species j and 

non-interacting species k gets closer to one, and both species contribute similarly to the 

evolution of species i. Therefore, as the leading eigenvalue increases, the contributions of 

interacting and non-interacting species becomes increasingly similar. Thus, the leading 

eigenvalue, which is the rate of pathway proliferation46, may contribute to trait 

evolution.  

 We next explored how network properties favor or constrain the number of 

pathways in a given network by increasing or decreasing the leading eigenvalue. We 

reviewed the results of spectral graph theory relating 𝜆¼,  to species richness, 

connectance, modularity, and nestedness to understand why species richness and 

nestedness favor indirect effects, whereas modularity decreases the role of indirect 

effects. The upper boundary for the leading eigenvalue of a bipartite graph is:  

𝜆¼, ≤ 𝐿          (S42) 

 The number of links in a bipartite graph is related to its species richness and 

connectance: 

𝐿 = 𝑁¼𝑁Â𝐶                        (S43) 

where C is the connectance, and 𝑁¼ 𝑁Â  is the species richness of set A (B). Combining 

S42 and S43 yields: 

𝜆¼, ≤ 𝑁¼𝑁Â𝐶          (S44) 

Therefore, the upper bound on the leading eigenvalue is positively affected by 

increasing species richness and/or connectance. Because the contribution of indirect 

effects is affected by the leading eigenvalue of matrix A, this result explains the positive 

association between species richness and the contribution of indirect effects to the trait 

evolution observed in the numerical simulations. However, the incongruence between 

the results of the principal component analysis (PCA) and spectral graph theory on the 

role of connectance in the contribution of indirect effects suggests that the effects of 

connectance on the upper bound values of leading eigenvalues do not affect the amount 

of indirect effects.  
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The level of nestedness of a network is the degree to which the interactions of a 

given species i with 𝑘" interactions are a proper subset of the interactions of a species j 

with 𝑘=  > 𝑘"  interactions. The spectral properties of nestedness in ecological networks 

were explored using the spectral properties of double-nested graphs47. Although the 

concept of perfect nestedness in ecological systems is distinct from the concept of 

double-nested graphs30,48-50, double-nested graphs provide a useful connection between 

nestedness and spectral graph theory. For fixed values of species richness and 

connectance, the graph with the largest 𝜆¼,  is a double-nested graph47. Therefore, after 

controlling for the effects of species richness and connectance, greater nestedness values 

should result in higher contributions of non-interacting species. In fact, we detected a 

positive relationship between nestedness, measured using an independent index — the 

nestedness metric based on overlap and decreasing fill (NODF)—, and the relative 

contribution to trait evolution. 

The level of modularity is the level to which the species of a network are arranged as 

semi-isolated groups of interacting nodes called modules. Multiple modules with just a 

few interactions between modules characterize a network with a high level of 

modularity. As a consequence, connectance is often small in modular networks, 

resulting in a reduction in the upper bound of 𝜆¼, . Moreover, the formation of semi-

independent modules within networks reduces the largest eigenvalue of the network. 

For example, consider the limiting case in which the network is formed by M isolated 

components, in which there is no pathway connecting nodes in two distinct 

components. Let us define 𝐀𝐛 as a submatrix of A, describing a component b. In this 

scenario, 𝜆¼, = max
Ì

𝜆¼Í, where max
Ì

𝜆¼Í	is the largest among the leading eigenvalues of all 

submatrices defining the components of A46. If we assume the network has at least two 

components, then the number of interactions of either component is smaller than the 

number of interactions of the network. Therefore, 

𝜆¼, = max
Ì

𝜆¼Í < 𝐿 (S45) 

As a result, modularity reduces the leading eigenvalue and, consequently, the 

contribution of non-interacting species. 

3.1. Conditions for the mean-field approximation of coevolutionary pathways 
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We verified the conditions under which the assumption 𝜆¼ 𝑞 < 1 holds in our 

analytical approximation. We made the simplifying assumption that 𝑁¼ = 𝑁Â = 𝑁³. The 

expected direct evolutionary effect of a given interaction,	 𝑞 , can be defined as 𝑞 =

𝑚 ,
f
= 𝑚 >Î

Ã
. The total number of interactions in this approximation was 𝐿 = 𝐶𝑁³0. We

used these equations to rewrite 𝜆¼ 𝑞 < 1 as follows: 

𝜆¼𝑚
>Î
Ã
< 1         (S46a) 

𝜆¼ <
Ã

³>Î
         (S46b) 

We explored the limiting case in which the eigenvalue is maximal in a bipartite 

graph, 𝜆¼ = 𝐿 (S42). Combining S42 and S46 yields:   

𝐿 < Ã
³>Î

(S47a) 

𝑁³ 𝐶 < Ï>ÎO

³>Î
(S47b) 

𝑚 < 𝐶 (S47c) 

Therefore, our analytical approximation held if mutualistic selection, m, is 

sufficiently weak and/or the network connectance (C) is sufficiently large. 

4. Environmental change simulation

We constructed a GLM addressing the relationships of indirect effects with the 

time-to-equilibrium of the coevolutionary dynamics and the amount of directional 

evolutionary change recorded in our simulations of environmental change. We 

estimated the contribution of indirect effects to coevolutionary dynamics as the least 

square estimates of the effect of network structure on the relative contribution of indirect 

effects after controlling for the level of mutualistic selection. Species richness affected the 

relative contribution of indirect effects to trait evolution (linear-log regression, slope = 

0.10, R2 = 0.64, F1,73 = 129.47, P < 0.0001) and the response variables (time-to-equilibrium: 

simple linear regression, slope = 0.80, R2 = 0.51, F1,73 = 75.72, P < 0.0001; amount of 

directional change: linear-log regression, slope = -5.29x10-6, R2 = 0.60, F1,73 = 107.83, P < 

0.0001). Hence, we performed an additional analysis controlling for the effects of species 

richness in both the explanatory and response variables. We used the residuals of the 
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relationship between species richness and all of the variables. We then performed simple 

linear regressions to investigate the relationship between the residuals of the least 

squares estimates and the residuals of the response variables. After controlling for the 

effects of species richness, the patterns reported in the main text held: Indirect effects 

were positively associated with time-to-equilibrium and negatively associated with the 

amount of evolutionary change (Supplementary Table 4). 

In our baseline analyses, we changed the trait value favored by the environment 

to 𝜃" + 𝜀"  for every species i. Because the change 𝜀"  was randomly sampled from a 

uniform distribution [0,1], perturbation represents an increase in the trait values favored 

by environmental selection in all species. Thus, we also used one alternative 

perturbation scheme to determine whether our conclusions relating indirect effects to 

coevolutionary dynamics after perturbation were dependent on the perturbation scheme 

used. We ran an additional set of simulations following the same algorithm of the 

baseline perturbations with one difference: we sampled 𝜀" from a uniform distribution [-

0.1,0.1]. In this new scheme, perturbations may increase or decrease the trait values 

favored by environmental selection. Despite the differences between perturbation 

schemes, the results are very similar to those of the baseline simulations. Indirect effects 

were positively associated with the time-to-equilibrium (log-linear regression, R2 = 0.61, 

F1,73= 114.36, P < 0.001) and the amount of directional change (simple linear regression, 

R2 = 0.83, F1,73= 370.98, P < 0.001). After controlling for the effects of species richness, the 

same patterns held when analyzing the residuals of the variables (time-to-equilibrium: 

linear regression, R2 = 0.23, F1,73= 22.01, P < 0.001; and amount of directional change: 

simple linear regression, R2 = 0.44, F1,73= 57.49, P < 0.001). 
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Supplementary Table 1. Empirical networks of distinct mutualisms used to parameterize the 
coevolutionary model and study indirect effects on coevolutionary dynamics. Each mutualism 
is identified by the two sets of species that interact; 𝑁" = species richness of the first set of 
species (rows) (e.g., in anemone-anemonefish interactions, 𝑁" refers to the species richness of 
anemones); 𝑁# = species richness of the second set of the species (columns); binary = binary 
information on species interactions; quantitative = quantitative information on species 
interactions, C = connectance, QE = bipartite modularity index; 𝑁$   = nestedness (NODF); 𝜆𝐀'   = 
leading eigenvalue of the adjacency matrix describing binary interactions; IWDB = dataset 
available for download at https://www.nceas.ucsb.edu/interactionweb/; Web-of-life = dataset 
available for download at http://www.web-of-life.es/; Rico-Gray = dataset kindly provided 
by Victor Rico-Gray; Izzo = dataset kindly provided by Thiago Izzo; Sazima = dataset kindly 
provided by Cristina and Ivan Sazima; Donatti = dataset kindly provided by Camila Donatti; 
Hasui = dataset kindly provided by Erica Hasui, Mariana Vidal, and Wesley Silva; Jordano = 
dataset provided by one of the authors (PJ). 

# Mutualism Country Data 𝑁" 𝑁# C QE 𝑁$ 𝜆𝐀'  Availability 

1 
Anemone-
Anemonefish 

Indonesia binary 4 4 0.44 0.39 62.5 2.22 IWDB1 

2 
Anemone-
Anemonefish 

Indonesia binary 4 5 0.3 0.56 12.5 1.73 IWDB1 

3 
Anemone-
Anemonefish 

Indonesia binary 4 4 0.44 0.39 29.17 2.03 IWDB1 

4 
Anemone-
Anemonefish 

Indonesia binary 4 4 0.38 0.47 16.67 1.80 IWDB1 

5 
Anemone-
Anemonefish 

Indonesia binary 5 5 0.32 0.48 22.5 1.99 IWDB1 

6 
Anemone-
Anemonefish 

Indonesia binary 4 5 0.35 0.47 12.5 1.85 IWDB1 

7 
Anemone-
Anemonefish 

Indonesia binary 6 5 0.33 0.44 38 2.39 IWDB1 

8 
Anemone-
Anemonefish 

Indonesia binary 4 5 0.4 0.44 34.38 2.12 IWDB1 

9 
Anemone-
Anemonefish 

Indonesia binary 3 4 0.5 0.33 22.22 1.85 IWDB1 

10 
Anemone-
Anemonefish 

Indonesia binary 4 4 0.44 0.37 37.5 1.99 IWDB1 

11 
Anemone-
Anemonefish 

Indonesia binary 5 3 0.47 0.41 38.46 2.00 IWDB1 

12 

Ant-Extrafloral 
nectar (EFN) 
plant 

Australia 
quantitati
ve 

41 51 0.14 0.3
1 

43.5
1 

11.3
4 

IWDB2 

13 
Ant-EFN plant Mexico binary 10 38 0.25 0.3

6 
39.1
7 

6.65 Rico-Gray 

14 
Ant-EFN plant Mexico binary 28 99 0.1 0.4

7 
40.5
9 

10.6
4 

Rico-Gray 

15 
Ant-EFN plant Mexico binary 5 12 0.22 0.7

5 
2.63 2 Rico-Gray 

16 
Ant-EFN plant Mexico binary 13 46 0.21 0.4

5 
35.5
5 

7.54 Rico-Gray 

17 
Ant-
myrmecophyte Peru binary 16 8 0.15 0.7

8 
4.28 2.33 IWDB3 

18 
Ant-
myrmecophyte Brazil quantitati

ve 
25 16 0.12 0.6

9 
13.6
3 

3.39 IWDB4 

19 
Ant-
myrmecophyte Brazil quantitati

ve 
6 5 0.23 0.6

9 
8 1.62 Izzo 

20 
Ant-
myrmecophyte Brazil quantitati

ve 
9 7 0.17 0.7

8 
7.02 1.62 Izzo 

21 
Ant-
myrmecophyte Brazil quantitati

ve 
13 8 0.16 0.6

9 
11.3
2 

2.45 Izzo 

22 
Ant-
myrmecophyte Brazil quantitati

ve 
8 7 0.16 0.7

9 
0 1.73 Izzo 



23 
Ant-
myrmecophyte Brazil quantitati

ve 
12 9 0.15 0.7

8 
4.9 2.14 Izzo 

24 
Ant-
myrmecophyte 

Brazil quantitati
ve 

10 8 0.15 0.7
8 

4.11 1.85 Izzo 

25 Cleaner-client Brazil binary 5 35 0.42 0.26 70.73 7.39 Sazima 

26 
Cleaner-client Netherlands 

Antilles 
binary 

6 50 0.35 0.30 
64.47 

8.55 
5 

27 Cleaner-client Virgin Islands binary 4 32 0.41 0.36 46.30 5.85 6

28 
Frugivore-plant Australia binary 7 72 0.28 0.3

3 
51.6
7 

9.62 Web-of-
Life7 

29 
Frugivore-plant Brazil binary 46 45 0.13 0.4

2 
27.8 9.93 Donatti 

30 
Frugivore-plant Brazil quantitati

ve 
29 35 0.14 0.3

8 
35.4
9 

7.73 Web-of-
Life8 

31 
Frugivore-plant Brazil binary 44 42 0.09 0.4

6 
17.1
5 

6.38 Hasui 

32 
Frugivore-plant Costa Rica binary 40 169 0.1 0.4

0 
32.8
7 

15.0
6 

Web-of-
Life9 

33 
Frugivore-plant Kenya quantitati

ve 
88 33 0.14 0.3

1 
34.5
8 

14.0
5 

IWDB10 

34 
Frugivore-plant Malaysia binary 61 25 0.34 0.2

1 
58.8
6 

17.8
8 

Web-of-
Life11 

35 
Frugivore-plant Mexico binary 27 5 0.64 0.1

8 
67.3
4 

8.12 Web-of-
Life12 

36 
Frugivore-plant Panamá quantitati

ve 
19 4 0.43 0.3

5 
48.2
9 

4.56 IWDB13 

37 
Frugivore-plant Panamá quantitati

ve 
11 13 0.37 0.2

5 
73.9 6 IWDB13 

38 
Frugivore-plant Papua New 

Guinea 
quantitati
ve 

9 31 0.43 0.2
2 

67.6
6 

9.01 Web-of-
Life14 

39 
Frugivore-plant Papua New 

Guinea 
binary 32 29 0.07 0.6

5 
11.2
1 

4.04 Web-of-
Life15 

40 
Frugivore-plant Puerto Rico quantitati

ve 
16 25 0.17 0.4

0 
44.7 5.59 16

41 
Frugivore-plant Puerto Rico quantitati

ve 
20 34 0.14 0.3

9 
43.3
8 

6.8 16 

42 
Frugivore-plant Puerto Rico quantitati

ve 
13 25 0.15 0.5

4 
29.6
9 

4.44 16 

43 
Frugivore-plant Puerto Rico quantitati

ve 
15 21 0.16 0.4

7 
34.1
7 

4.62 16 

44 
Frugivore-plant Spain quantitati

ve 
17 16 0.44 0.2

4 
78.7
6 

9.09 Jordano 

45 
Frugivore-plant Spain quantitati

ve 
33 25 0.18 0.3

3 
58.9
8 

8.65 17

46 
Frugivore-plant UK quantitati

ve 
14 11 0.3 0.3

4 
42.7
1 

4.84 IWDB18 

47 
Frugivore-plant USA quantitati

ve 
21 7 0.34 0.3

2 
50.9
8 

5.38 Web-of-
Life19 

48 
Pollinator-plant Argentina binary 45 21 0.09 0.6

2 
18.0
2 

4.86 Web-of-
Life20 

49 
Pollinator-plant Argentina binary 72 23 0.08 0.5

9 
22.8
8 

6.74 Web-of-
Life20 

50 
Pollinator-plant Argentina quantitati

ve 
29 10 0.15 0.5

4 
29.5
4 

4.62 IWDB21 

51 
Pollinator-plant Argentina quantitati

ve 
33 9 0.15 0.6

2 
18.6
6 

4.2 IWDB21 

52 
Pollinator-plant Argentina quantitati

ve 
29 10 0.14 0.5

8 
26.3
1 

4.67 IWDB21 

53 
Pollinator-plant Argentina quantitati

ve 
26 8 0.17 0.5

5 
23.2
8 

4.04 IWDB21 

54 
Pollinator-plant Argentina quantitati

ve 
27 8 0.22 0.5

0 
30.3
1 

4.52 IWDB21 

55 
Pollinator-plant Australia quantitati

ve 
85 40 0.08 0.4

2 
19.3
1 

8.7 Web-of-
Life22 



56 
Pollinator-plant Brazil quantitati

ve 
13 13 0.42 0.2

3 
84.9
3 

7.29 Web-of-
Life23 

57 
Pollinator-plant Brazil binary 25 51 0.15 0.3

2 
46.3
6 

9.39 24

58 
Pollinator-plant Canada quantitati

ve 
102 12 0.14 0.4

9 
30.7
8 

8.7 Web-of-
Life25 

59 
Pollinator-plant Canada binary 86 29 0.07 0.5

0 
26.5
1 

7.92 IWDB26 

60 
Pollinator-plant Canada quantitati

ve 
18 11 0.19 0.4

8 
32.0
8 

4.32 IWDB27 

61 
Pollinator-plant Canada quantitati

ve 
34 13 0.32 0.2

6 
40.9
6 

8.6 Web-of-
Life28 

62 
Pollinator-plant Chile binary 101 87 0.04 0.5

2 
14.7
2 

9.02 29

63 
Pollinator-plant Chile binary 64 42 0.07 0.5

3 
16.2
6 

6.82 29

64 
Pollinator-plant Chile binary 28 41 0.08 0.6

1 
19.2
5 

4.9 29

65 
Pollinator-plant Mauritius quantitati

ve 
100 58 0.09 0.3

1 
34.3
5 

15.0
9 

IWDB30 

66 
Pollinator-plant New Zealand binary 60 18 0.11 0.5

6 
13.9
4 

5.23 Web-of-
Life32 

67 
Pollinator-plant Azores, 

Portugal 
quantitati
ve 

12 10 0.25 0.4
4 

35.9
6 

3.68 IWDB31 

68 
Pollinator-plant Canarias, 

Spain 
quantitati
ve 

38 11 0.26 0.3
5 

37.1
6 

6.79 IWDB33 

69 
Pollinator-plant Mauritius quantitati

ve 
13 14 0.29 0.3

4 
51.8
7 

5.24 IWDB31 

70 
Pollinator-plant South Africa binary 56 9 0.20 0.4

4 
35.4
9 

7.04 Web-of-
Life34 

71 
Pollinator-plant Sweden quantitati

ve 
118 24 0.08

5 
0.5
1 

15.3
9 

7.91 Web-of-
Life35 

72 
Pollinator-plant UK quantitati

ve 
61 17 0.14 0.3

8 
52.2
7 

8.57 Web-of-
Life36 

73 
Pollinator-plant UK quantitati

ve 
36 16 0.15 0.4

4 
35.6
6 

6.12 Web-of-
Life36 

74 
Pollinator-plant USA quantitati

ve 
33 7 0.28 0.3

6 
56.6
6 

6.41 Web-of-
Life37 

75 
Pollinator-plant Venezuela binary 53 28 0.07 0.5

9 
11.1
6 

4.78 IWDB38 
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Supplementary Table 2. Summary of the GLM addressing the effects of the type of mutualism 
and the level of mutualistic selection on the contribution of indirect effects to trait evolution. 
Additional details of this analysis are available in the Supplementary Methods. 

F df P 
Model 837.12 6 < 0.0001 

Type of mutualism 194.94 5 < 0.0001 
Mutualistic selection 4047.97 1 < 0.0001 

Error 593 

Supplementary Table 3. Summary of the GLM addressing the effects of the type of mutualism, 
the species richness, and the level of mutualistic selection on the contribution of indirect effects 
to trait evolution. Additional details of this analysis are available in the Supplementary 
Methods. 

F df P 
Model 846.94 7 < 0.0001 

Type of mutualism 117.42 5 < 0.0001 
Species richness 96.56 1 < 0.0001 

Mutualistic selection 4700.26 1 < 0.0001 
Error 592 

Supplementary Table 4. Summary of simple linear regressions addressing the relationships 
between the indirect effects and two aspects of coevolutionary dynamics as response variables: 
time-to-equilibrium and the amount of directional change per species per time step. All of the 
variables were estimated as the residuals of regressions using species richness as an 
explanatory variable to control for the effects of species richness (n = 75 networks for all 
analysis). See the Supplementary Methods for further information. 

Time-to-equilibrium Amount of directional change 
slope 301.25 -1.6 x 10-3

F 40.08 35.06
R2 0.354 0.324
P < 0.0001 < 0.0001

Supplementary Table 5. Summary of simple linear regressions addressing the effect of each 
network metric on the mean contribution of indirect effects to trait evolution (n = 75 networks 
for all analyses). Species richness was log-transformed prior the analysis. Additional details can 
be found in the Supplementary Methods (section 3). 

slope F R2 P 
Species Richness 0.081 131.24 0.642 < 0.0001 

Connectance -0.147 3.75 0.049 0.0567 
Relative Nestedness 0.114 127.04 0.635 < 0.0001 
Relative Modularity -0.537 91.11 0.555 < 0.0001 
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Letter RESEARCH

Extended Data Figure 1 | Trait dynamics of a mutualistic network.  
a, A typical simulation of the coevolutionary model describing the 
temporal variation in the trait dynamics for a four-species network  
(b, see also Fig. 1c). Points of a given colour represent the evolution of the 
mean trait value of one species. Small squares indicate the environmental 

optima of the species in the network. Squares and points corresponding to 
the same species are presented in the same colour. The mean mutualistic 
selection was set at <​m> =​ 0.7 ±​ 0.01. Other parameters: ϕ =​ 0.2 ±​ 0.01, 
θi =​ U[0, 10]. Similarly, the simulations converged to equilibrium for all 
empirical networks.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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study. 
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Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
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c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Not Applicable.
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ICLAC, provide a scientific rationale for their use.

Not Applicable.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Not Applicable.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Not Applicable.
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