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Bascompte et al. (Reports, 21 April 2006, p. 431) used network asymmetries to explain
mathematical conditions necessary for stability in historic models of mutualism. The Lotka-Volterra
equations they used artificially created conditions in which some factor, such as asymmetric
interaction strengths, is necessary for community coexistence. We show that a more realistic
model incorporating nonlinear functional responses requires no such condition and is
consistent with their data.

M
utualism was once thought to be in-

herently unstable due to unrealistic

assumptions of now historic Lotka-

Volterra theory. Suchmodels (1, 2) entail chang-

ing negative signs of Lotka-Volterra competition

equations to positive signs to reflect the benefits

of mutualism. These models showed that

mutualism is stable under limited mathematical

conditions, namely, weak interaction strengths in

which the product of mutualism coefficients is

less than unity and/or less than the product of

intraspecific competition coefficients. Otherwise,

instability ensues through unbounded population

growth. Extending two-species Lotka-Volterra

models of mutualism (3–5), Bascompte et al.

(6) repeated this result for mutualistic commu-

nities. They showed that the necessary condi-

tion for a positive steady state is ab G (ST/mn),

in which interaction strengths of mutualism

(ab) must be less than intraspecific competition

coefficients (ST ) for a community size (mn) of

m animal and n plant species. In other words,

for stable coexistence, the strength of mutual-

ism must decline with community size for

given constant intraspecific competition coef-

ficients. Based on these theoretical results, they

analyzed plant/pollinator and plant/seed dis-

perser communities to show that interaction

strengths of mutualistic networks are weak and

asymmetric (hence, small ab), and thus explain

community coexistence.

Although the authors admitted to their mod-

el_s simplicity (6), we show that their results are

also not robust. Including the biologically fun-

damental feature of nonlinear functional re-

sponses in their model removes the coexistence

condition Eab G (ST/mn)^ that motivated their

data explorations. Themodelwith nonlinear func-

tional responses does not require weak or asym-

metric interaction strengths for community co-

existence. Using the authors_ data sets, we also

show that interaction strengths do not necessarily

decline with community size, as predicted by

their model.

More than 25 years ago, May (7) identified

Lotka-Volterra models of mutualism as inade-

quate and unrealistically simple. Lotka-Volterra

models of mutualism between two species (3) or

among large groups of species (6) require some

factor to stabilize interactions because their

inherent linear functional responses (i.e., ever-

increasing mutual benefits with increasing

population densities) lead to unbounded popu-

lation growth. Although many modifications

can make these models more realistic, their

most fundamental deficiency is not incorpo-

rating the general property that beneficial

effects of one species on another tend to sat-

urate with increasing population size of the

former (8–10). By simply incorporating a

Holling type II functional response into the dy-

namic equations employed by Bascompte et al.,

the mathematical condition ab G (ST/mn) is not

necessary for stability and a positive steady

state occurs for the entire parameter space (Fig. 1)

(11). In contrast to Bascompte et al., a more

realistic model of mutualistic communities does

not require weak or asymmetric interaction

strengths, or declining interaction strengths with

community size, to explain stability and com-

munity coexistence.

Through analyses of plant/pollinator and

plant/seed disperser communities, Bascompte

et al. showed that interaction strengths are weak

and asymmetric. However, their results depend

critically on assumptions (12) of their use of

interaction frequency (dependence) as a substi-

tute for per capita interaction strength, which

gives unreliable estimates when the satura-

tion effect (i.e., a type II functional response) is

present and/or the densities of species vary greatly.

Without density data, it is difficult to predict

the strength of these effects. Nonetheless, even

assuming that these factors are negligible, our

analyses of their data refute the generality of

their model prediction that mutualism strength

(ab) declines with community size (mn) Esee
figure S1 in (6)^. Although a negative relation-

ship exists for plant/pollinator communities

(Fig. 2), the decline in mutualism strength is

not nearly as strong as predicted. The plant/seed

disperser communities do not show the nega-

tive relationship (Fig. 2). Although more data

are needed to evaluate mutualism strength with

community size, the discrepancy observed in the

plant/seed disperser data may be considered an

absence of such a relationship among parameters

Ei.e., ab G (ST/mn)^. Taken together with the

theoretical results (Fig. 1), the negative trend

observed in the plant/pollinator data is likely

driven by a factor other than the Lotka-Volterra

condition for community coexistence. The pur-

suit ofmechanisms that produceweakmutualistic

interactions to explain Lotka-Volterra theory for

mutualism has been and remains precarious.

In recent years, important progress has been

made by Bascompte, Jordano, Olesen, and others

Esee references in (6)^ in recognizing that mutu-

alisms form nested, asymmetric networks. Emerg-

ing empirical patterns associated with asymmetric

networks, including those reported in Bascompte

et al. (6), show great utility for empirical and

theoretical studies of the structure and dynamics

of mutualistic communities. In particular, like

more traditional consumer-resource systems (13),

it may well be that asymmetric patterns of inter-

action strengths contribute to stability of mutual-

istic communities. However, it would be a

setback if the importance of these patterns were

overlooked or undermined because of their ap-

plication to historically unrealistic models of

mutualism that entail mathematically artificial

stability conditions resulting from linear function-

al responses.
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Fig. 1. Phase-plane diagram showing zero-
growth isoclines for mutualistic communities of
plants (dP/dt 0 0) and animals (dA/dt 0 0) after
incorporating a Holling type II functional response
into dynamic equations of Bascompte et al. (6). A
positive steady state for the mutualistic commu-
nities is indicated by a solid dot at the point of
intersection of the two isoclines (11).
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Fig. 2. Mutualism strength (product of the parameters describing
dependence of the animal on the plant and the plant on the animal) as
a function of the size of mutualistic communities. Number of species is
the sum of plant and animal species described in each independent study
and was used as a proxy for community size. Monotonically decreasing
mutualism strength with increasing number of species was found in the
plant/pollinator data (Spearman’s rank correlation test, r 0 –0.20, P G

0.001) but is absent in the plant/seed disperser data (Spearman’s rank
correlation test, r 0 0.15, P , 1). These statistical conclusions are robust
even when the biased sample size for the larger communities is
accounted for. These analyses assume that the strength of intraspecific
interactions is independent of community size, because there is an
absence of such data in the data sets (6), and that interaction frequency
can be substituted for per capita interaction strength (12).
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Methods and analyses for Figure 1 and inclusion of a Type II functional response.  

 Although many modifications can be made to Lotka-Volterra models of mutualism, 

minimally realistic models of mutualism, whether they be of two-species or large communities, 

should incorporate nonlinear functional responses (1, 2). This is not just one of many 

complications that can be made to Lotka-Volterra models, but likely the most essential 

modification for any model of mutualism. In its most general application, the functional response 

represents how per-capita growth rate of one population varies as a function of the number of 

individuals or density of another population. Here, we limit ourselves to the inclusion of 

saturating functional responses, as they have been particularly important to the development of 

more realistic, mechanistic theory for predation and competition (3, 4). We modified Lotka-

Volterra equations (1) - (4) of the supplemental online materials of Bascompte et al. (5) by 

simply incorporating a Holling Type II functional response. Rewriting equations (3) and (4) of 

Bascompte et al. (5) and including the Type II functional response gives the following equations: 

 

  dPi

dt
= rP +

αAmP
1+αh1Am

− SP 2 − d1P       (1) 

and 

  
dA j

dt
= qA +

βPnA
1+ βh2Pn

−TA2 − d2A .      (2) 

 

All parameters and variables in equations (1) and (2) are as in Bascompte et al. (5), except for the 

addition of the second terms, which represent Type II functional responses in which h1 and h2 are 

handling times, and the addition of the fourth terms, which represent mortality rates determined 

by parameters d1 and d2. These latter two parameters were set to zero for consistency with 

Bascompte et al. (5). It is important to note that, when h1=h2=0, equations (1) and (2) above are 

identical to equations (3) and (4) of the supplemental online materials of Bascompte et al.. 



Setting dP/dt=0 and dA/dt=0 and solving for the zero growth isoclines, it can be shown that as 

long as h1>0, h2>0, and all parameters are positive, then there will be a positive steady state 

solution (P*, A*) as depicted in Fig. 1, such that r /S < P* < r /S +1/(Sh1)  and 

q /T < A* < q /T +1/(Th2) . In neither case is the positive steady state dependent upon interaction 

strengths of α and β [i.e., mutual dependencies of Bascompte et al. (5)]. These results are not 

idiosyncratic to handling times, as handling times of Holling Type II functional responses are 

only one of many different biological factors that can lead to saturating benefits (2). 
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