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Summary

1. Sampling ecological interactions presents similar challenges, problems, potential biases and

constraints as sampling individuals and species in biodiversity inventories. Robust estimates of

the actual number of interactions (links) within diversified ecological networks require ade-

quate sampling effort that needs to be explicitly gauged. Yet we still lack a sampling theory

explicitly focusing on ecological interactions.

2. While the complete inventory of interactions is likely impossible, a robust characterization

of its main patterns and metrics is probably realistic. We must acknowledge that a sizeable

fraction of the maximum number of interactions Imax among, say, A animal species and P

plant species (i.e. Imax ¼ AP) is impossible to record due to forbidden links, that is life-history

restrictions. Thus, the number of observed interactions I in robustly sampled networks is typi-

cally I\\Imax, resulting in sparse interaction matrices with low connectance.

3. Here I provide a review and outline a conceptual framework for interaction sampling by

building an explicit analogue to individuals and species sampling, thus extending diversity-

monitoring approaches to the characterization of complex networks of ecological interactions.

Contrary to species inventories, a sizable fraction of non-observed pairwise interactions cannot

be sampled, due to biological constraints that forbid their occurrence.

4. Reasons for forbidden links are multiple but mainly stem from spatial and temporal uncoupling,

size mismatches and intrinsically low probabilities of interspecific encounter for most potential inter-

actions of partner species. Adequately assessing the completeness of a network of ecological interac-

tions thus needs knowledge of the natural history details embedded, so that forbidden links can be

accounted for as a portion of the unobserved links when addressing sampling effort.

5. Recent implementations of inference methods for unobserved species or for individual-based

data can be combined with the assessment of forbidden links. This can help in estimating their

relative importance, simply by the difference between the asymptotic estimate of interaction

richness in a robustly sampled assemblage and the maximum richness Imax of interactions. This

is crucial to assess the rapid and devastating effects of defaunation-driven loss of key ecological

interactions and the services they provide and the analogous losses related to interaction gains

due to invasive species and biotic homogenization.
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Introduction

Biodiversity sampling is a labour-intensive activity, and sam-

pling is often not sufficient to detect all or even most of the

species present in an assemblage. Gotelli & Colwell (2011)

Biodiversity species assessment aims at sampling individ-

uals in collections and determining the number of species

represented. Given that, by definition, samples are

incomplete, these collections do not enumerate the species

actually present. The ecological literature dealing with

robust estimators of species richness and diversity in col-

lections of individuals is immense, and a number of useful

approaches have been used to obtain such estimates

(Magurran 1988; Gotelli & Colwell 2001, 2011; Colwell,

Mao & Chang 2004; Hortal, Borges & Gaspar 2006; Col-

well 2009; Chao et al. 2014). Recent effort has been also

focused at defining essential biodiversity variables (EBV;

Pereira et al. 2013) that can be sampled and measured*Correspondence author. E-mail: jordano@ebd.csic.es
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repeatedly to complement biodiversity estimates. Yet sam-

pling species or taxa-specific EBVs is just probing a single

component of biodiversity; interactions among species are

another fundamental component, one that supports the

existence, but in some cases also the extinction, of species.

For example, the extinction of interactions represents a

dramatic loss of biodiversity because it entails the loss of

fundamental ecological functions (Valiente-Banuet et al.

2014). This missed component of biodiversity loss, the

extinction of ecological interactions, very often accompa-

nies or even precedes, species disappearance. Interactions

among species are thus a key component of biodiversity

and here I aim to show that most problems associated with

sampling interactions in natural communities relate to,

and are even worse than, problems associated with sam-

pling species diversity. I consider pairwise interactions

among species at the habitat level, in the context of alpha

diversity and the estimation of local interaction richness

from sampling data (Chao et al. 2014). In the first part, I

provide a succinct overview of previous work addressing

sampling issues for ecological interaction networks. In the

second part, I discuss specific rationales for sampling the

biodiversity of ecological interactions. Finally, I provide a

short overview of asymptotic diversity estimates (Gotelli &

Colwell 2001) and a discussion of its application to inter-

action sampling. Most of the examples come from the

analysis of plant–animal interaction networks, yet are

applicable to other types of interspecific interactions.

Interactions can be a much better indicator of the rich-

ness and diversity of ecosystem functions than a simple list

of taxa and their abundances and/or related biodiversity

indicator variables (EBVs; Memmott et al. 2006; Valiente-

Banuet et al. 2014). Thus, sampling interactions should be

a central issue when identifying and diagnosing ecosystem

services (e.g. pollination, seeding by frugivores). Fortu-

nately, the whole battery of biodiversity-related tools used

by ecologists to sample biodiversity (species, sensu stricto)

can be extended and applied to the sampling of interactions

(see table 2 in Colwell, Mao & Chang 2004). Monitoring

interactions is a type of biodiversity sampling and is subject

to similar methodological shortcomings, especially under-

sampling (Jordano 1987; Jordano, V�azquez & Bascompte

2009; V�azquez, Chacoff & Cagnolo 2009; Dorado et al.

2011; Rivera-Hutinel et al. 2012). We are interested in hav-

ing a complete list of all the pairwise interactions among

species (e.g. all the distinct, species–species interactions or

links, among the pollinators and flowering plants) that do

actually exist in a given community. Sampling these inter-

actions thus entails exactly the same problems, limitations,

constraints and potential biases as sampling individual

organisms and species diversity. As Mao & Colwell (2005)

put it, these are the workings of Preston’s demon, the mov-

ing ‘veil line’ (Preston 1948) between the detected and the

undetected interactions as sample size increases.

Early efforts to recognize and solve sampling problems

in analyses of interactions stem from research on food

webs and to determine how undersampling biases food

web metrics (Martinez 1991; Cohen et al. 1993; Wells &

O’Hara 2012, among others). In addition, the myriad of

classic natural history studies documenting animal diets,

host–pathogen infection records, plant herbivory records,

etc. represents efforts to document interactions occurring

in nature. All of them share the problem of sampling

incompleteness influencing the patterns and metrics

reported. Yet, despite the early recognition that incomplete

sampling may seriously bias the analysis of ecological net-

works (Jordano 1987), only recent studies have explicitly

acknowledged it and attempted to determine its influence

(Ollerton & Cranmer 2002; Nielsen & Bascompte 2007;

V�azquez, Chacoff & Cagnolo 2009; Gibson et al. 2011;

Olesen et al. 2011; Chacoff et al. 2012; Rivera-Hutinel

et al. 2012; Bascompte & Jordano 2014; Olito & Fox 2014;

Vizentin-Bugoni, Maruyama & Sazima 2014; Frund,

McCann & Williams 2016; Vizentin-Bugoni et al. 2016).

The sampling approaches have been extended to predict

patterns of coextinctions in interaction assemblages (e.g.

hosts–parasites; Colwell, Dunn & Harris 2012). Most

empirical studies provide no indication of sampling effort,

implicitly assuming that the reported network patterns and

metrics are robust. Yet recent evidences point out that

number of partner species detected, number of actual links

and some aggregate statistics describing network patterns

are prone to sampling bias (Nielsen & Bascompte 2007;

Dorado et al. 2011; Olesen et al. 2011; Chacoff et al. 2012;

Rivera-Hutinel et al. 2012; Olito & Fox 2014; Frund,

McCann & Williams 2016). Most of these evidences, how-

ever, come either from simulation studies (Frund, McCann

& Williams 2016) or from relatively species-poor assem-

blages. Most certainly, sampling limitations pervade biodi-

versity inventories and we might rightly expect that

frequent interactions may be over-represented and rare

interactions may be missed entirely in studies of mega-

diverse assemblages (Bascompte & Jordano 2014); but, to

what extent?

Sampling interactions: methods

When we sample interactions in the field, we record the

presence of two species that interact in some way. For

example, Snow & Snow (1988) recorded an interaction

whenever they saw a bird ‘touching’ a fruit on a plant. We

observe and record feeding observations, visitation, occu-

pancy, presence in pollen loads or in faecal samples of indi-

vidual animals or plants and accumulate pairwise

interactions, that is lists of species partners and the fre-

quencies with which we observe them. We assume that the

matrix (species numbers) is predefined (i.e. all species inter-

acting are well documented).

Most types of ecological interactions can be illustrated

with bipartite graphs, with two or more distinct groups of

interacting partners (Bascompte & Jordano 2014); for illus-

tration purposes, I will focus more specifically on plant–
animal interactions. Sampling interactions requires filling

the cells of an interaction matrix with data. The matrix,
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D = AP (the adjacency matrix for the graph representation

of the network), is a 2D inventory of the interactions

among, say, A animal species (rows) and P plant species

(columns; Jordano 1987; Bascompte & Jordano 2014). The

matrix entries illustrate the values of the pairwise interac-

tions visualized in the D matrix and can be 0 or 1, for pres-

ence–absence of a given pairwise interaction, or take a

quantitative weight wji to represent the interaction inten-

sity or unidirectional effect of species j on species i (Bas-

compte & Jordano 2014; V�azquez et al. 2015). The

outcomes of most ecological interactions are dependent on

frequency of encounters (e.g. visit rate of pollinators, num-

ber of records of ant defenders, frequency of seeds in fae-

cal samples). Thus, a frequently used proxy for interaction

intensities wji is just how frequent new interspecific encoun-

ters are, whether or not appropriately weighted to estimate

interaction effectiveness (V�azquez, Morris & Jordano

2005).

We need to define two basic steps in the sampling of

interactions: (i) which type of interactions we sample; and

(ii) which type of record we get to document the existence

of an interaction. In step #1, we need to take into account

whether we are sampling the whole community of interac-

tor species (all the animal and plant species) or just a sub-

set of them, that is a sub matrix Dm;n of m < A animal

species and n < P plant species of the adjacency matrix

DAP. Subsets can be: (i) all the potential plants interacting

with a subset of the animals (Fig. 1a); (ii) all the potential

animal species interacting with a subset of the plant species

(Fig. 1b); (iii) a subset of all the potential animal species

interacting with a subset of all the plant species (Fig. 1c).

While some discussion has considered how to establish the

limits of what represents a network (Strogatz 2001; in

analogy to discussion on food web limits; Cohen 1978), it

must be noted that situations a–c in Fig. 1 do not repre-

sent complete interaction networks. Subnet sampling is

generalized in studies of biological networks (e.g. protein

interactions, gene regulation), yet it is important to recog-

nize that most properties of subnetworks (even random

subsamples) do not represent properties of whole networks

(Stumpf, Wiuf & May 2005).

In step #2 above, we face the problem of the type of

record we take to sample interactions. This is important

because it defines whether we approach the problem of fill-

ing up the interaction matrix in a ‘zoo-centric’ way or in a

‘phyto-centric’ way. Zoo-centric studies directly sample

animal activity and document the plants ‘touched’ by the

animal. For example, analysis of pollen samples recovered

from the body of pollinators, analysis of faecal samples of

frugivores, radio-tracking data, etc. Phyto-centric studies

take samples of focal individual plant species and docu-

ment which animals ‘arrive’ or ‘touch’ the plants. Exam-

ples include focal watches of fruiting or flowering plants to

record visitation by animals, raising insect herbivores from

seed samples, identifying herbivory marks in samples of

leaves, etc.

Most recent analyses of plant–animal interaction net-

works are phyto-centric; just 3�5% of available plant–polli-
nator (N = 58) or 36�6% plant–frugivore (N = 22)

interactions data sets are zoo-centric (see Schleuning et al.

2012). Moreover, most available data sets on host–parasite
(parasitoid) or plant–herbivore interactions are ‘host-

centric’ or phyto-centric (e.g. Th�ebault & Fontaine 2010;

Ekl€of et al. 2013; Morris et al. 2013). This may be related

to a variety of causes, like preferred methodologies by

researchers working with a particular group or system,

logistic limitations or inherent taxonomic focus of the

research questions. A likely result of phyto-centric sam-

pling would be adjacency matrices with large A : P ratios.

In contrast, zoo-centric samplings might be prone to detect

plants from outside the habitat, complicating the definition

of network boundaries. In any case, we do not have a clear

view of the potential biases that taxa-focused sampling

may generate in observed network patterns, for example

by generating consistently asymmetric interaction matrices

(Dormann et al. 2009).

Reasonably complete analyses of interaction networks

can be obtained when combining both phyto-centric and

zoo-centric sampling. For example, Bosch et al. (2009)

showed that the addition of pollen load data on top of

focal-plant sampling of pollinators unveiled a significant

number of interactions, resulting in important network

structural changes. Olesen et al. (2011) identified pollen

loads on sampled insects and added the new links to an

observation-based visitation matrix, with an extra 5% of

links representing the estimated number of missing links in

the pollination network. The overlap between observa-

tional and pollen load recorded links was only 33%,
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Fig. 1. Sampling ecological interaction networks (e.g. plant–ani-
mal interactions) usually focus on different types of subsampling

the full network, yielding submatrices D[m,n] of the full interaction

matrix D with A and P animal and plant species. (a) All the poten-

tial plants interacting with a subset of the animals (e.g. studying

just the hummingbird–pollinated flower species in a community);

(b) all the potential animal species interacting with a subset of the

plant species (e.g. studying the frugivore species feeding on figs

Ficus in a community); and (c) sampling a subset of all the poten-

tial animal species interacting with a subset of all the plant species

(e.g. studying the plant–frugivore interactions of the rainforest

understory).
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underscoring the value of combining methodological

approaches. Zoo-centric sampling has recently been

extended with the use of DNA barcoding, for example

with plant–herbivore (Jurado-Rivera et al. 2009), host–
parasiotid (Wirta et al. 2014; Evans et al. 2016) and plant–
frugivore interactions (Gonz�alez-Varo, Arroyo & Jordano

2014). For mutualistic networks, we would expect that

zoo-centric sampling could help unveiling interactions of

the animals with rare plant species or for relatively com-

mon plants species which are difficult to sample by direct

observation. Future methodological work may provide sig-

nificant advances showing how mixing different sampling

strategies strengthens the completeness of network data.

These mixed strategies may combine, for instance, timed

watches at focal plants, spot censuses along walked tran-

sects, pollen load or seed contents analyses, monitoring

with camera traps and DNA barcoding records. However,

there are no tested protocols and/or sampling designs for

ecological interaction studies to suggest an optimum com-

bination of approaches. Ideally, pilot studies would pro-

vide adequate information for each specific study setting.

Sampling interactions: rationale

The number of distinct pairwise interactions that we can

record in a landscape (an area of relatively homogeneous

vegetation) is equivalent to the number of distinct classes

in which we can classify the recorded encounters among

individuals of two different species. Yet, individual-based

interaction networks have been only recently studied

(Dupont, Trøjelsgaard & Olesen 2011; Wells & O’Hara

2012). The most usual approach has been to pool individ-

ual-based interaction data into species-based summaries,

an approach that ignores the fact that only a fraction of

individuals may actually interact given a per capita interac-

tion effect (Wells & O’Hara 2012). Wells & O’Hara (2012)

illustrate the pros and cons of the approach. We walk in

the forest and see a blackbird Tm picking an ivy Hh fruit

and ingesting it: we have a record for Tm�Hh interaction.

We keep advancing and record again a blackbird feeding

on hawthorn Cm fruits so we record a Tm�Cm interac-

tion; as we advance we encounter another ivy plant and

record a blackcap swallowing a fruit so we now have a

new Sa�Hh interaction, and so on. At the end, we have a

series of classes (e.g. Sa�Hh, Tm�Hh, Tm�Cm), along

with their observed frequencies.

We get a vector c ¼ ½c1. . .cn�0 where cj is the number of

classes represented j times in our sampling: c1 is the num-

ber of singletons (interactions recorded once), c2 is the

number of twin pairs (interactions with just two records),

c3 the number of triplets. The problem thus turns to be

estimating the number of distinct classes C from the vector

of cj values and the frequency of unobserved interactions

(see ‘The real missing links’ below).

More specifically, we usually obtain a type of reference

sample (Chao et al. 2014) for interactions: a series of

repeated samples (e.g. observation days, 1 h watches) with

quantitative information, that is recording the number of

instances of each interaction type on each day. This repli-

cated abundance data can be treated in three ways: (i)

Abundance data within replicates: the counts of interac-

tions, separately for each day; (ii) Pooled abundance data:

the counts of interactions, summed over all days (the most

usual approach); and (iii) Replicated incidence data: the

number of days on which we recorded each interaction.

Assuming a reasonable number of replicates, replicated

incidence data are considered to be the most robust statis-

tically, as it takes account of heterogeneity among days

(Colwell, Mao & Chang 2004; Colwell, Dunn & Harris

2012; Chao et al. 2014). Thus, both presence–absence and

weighted information on interactions can be accommo-

dated for this purpose.

THE SPEC IES ASSEMBLAGE

When we consider an observed and recorded sample of

interactions on a particular assemblage of Aobs and Pobs

species (or a set of replicated samples) as a reference sam-

ple (Chao et al. 2014), we may have three sources of

undersampling error. These sources are ignored if we treat

the reference sample as a true representation of the interac-

tions in a well-defined assemblage: (i) some animal species

are actually present but not observed (zero abundance or

incidence in the interactions in the reference sample), A0;

(ii) some plant species are actually present but not

observed (zero abundance or incidence in the interactions

in the reference sample), P0; (iii) some unobserved links

(the zeroes in the adjacency matrix, UL) may actually

occur but not recorded. Thus, a first problem is determin-

ing if Aobs and Pobs truly represent the actual species rich-

ness interacting in the assemblage. To this end, we might

use the replicated reference samples to estimate the true

number of interacting animal Aest and plant Pest species as

in traditional diversity estimation analysis (Chao et al.

2014). If there are no uniques (species seen on only one

day), then A0 and P0 will be zero (based on the Chao2 for-

mula), and we have Aobs and Pobs as robust estimates of

the actual species richness of the assemblage. If A0 and P0

are not zero, they estimate the minimum number of unde-

tected animal and plant species that can be expected with a

sufficiently large number of replicates, taken from the same

assemblage/locality by the same methods in the same time

period. We can use extrapolation methods (Colwell, Dunn

& Harris 2012) to estimate how many additional replicate

surveys it would take to reach a specified proportion g of

Aest and Pest.

THE INTERACT IONS

We are then faced with assessing the sampling of interac-

tions I. Table 1 summarizes the main components and tar-

gets for the estimation of interaction richness. In contrast

with traditional species diversity estimates, sampling net-

works has the paradox that despite the potentially
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interacting species being present in the sampled assemblage

(i.e. included in the Aobs and Pobs species lists), some of

their pairwise interactions are impossible to record. The

reason is forbidden links. Independently of whether we

sample full communities or subset communities, we face a

problem: some of the interactions that we can visualize in

the empty adjacency matrix D will simply not occur. With

a total of AobsPobs ‘potential’ interactions (eventually aug-

mented to AestPest in case we have undetected species), a

fraction of them are impossible to record, because they are

forbidden (Jordano, Bascompte & Olesen 2003; Olesen

et al. 2011).

Our goal is to estimate the true number of non-null AP

interactions, including interactions that actually occur but

have not been observed (I0) from the replicated incidence

frequencies of interaction types: Iest ¼ Iobs þ I0. Note that

I0 estimates the minimum number of undetected plant–ani-
mal interactions that can be expected with a sufficiently

large number of replicates, taken from the same assem-

blage/locality by the same methods in the same time per-

iod. Therefore, we have two types of non-observed links:

UL* and UL, corresponding to the real assemblage species

richness and to the observed assemblage species richness,

respectively (Table 1).

Forbidden links are non-occurrences of pairwise interac-

tions that can be accounted for by biological constraints,

such as spatio-temporal uncoupling (Jordano 1987), size or

reward mismatching, foraging constraints (e.g. accessibil-

ity; Mor�e et al. 2012) and physiological–biochemical con-

straints (Jordano 1987). We still have very little

information about the frequency of forbidden links in nat-

ural communities (Jordano, Bascompte & Olesen 2003;

Stang et al. 2009; V�azquez, Chacoff & Cagnolo 2009;

Olesen et al. 2011; Ibanez 2012; Maruyama et al. 2014;

Vizentin-Bugoni, Maruyama & Sazima 2014; Table 1).

Forbidden links are thus represented as structural zeroes

in the interaction matrix, that is matrix cells that cannot

get a nonzero value. Therefore, we need to account for the

frequency of these structural zeros in our matrix before

proceeding.

Our main problem then turns to estimate the number of

true missed links, that is those that cannot be accounted

for by biological constraints and that might suggest under-

sampling. Thus, the sampling of interactions in nature, as

the sampling of species, is a cumulative process. In our

analysis, we are not re-sampling individuals, but interac-

tions, so we built interaction-based accumulation curves.

We add new, distinct, interactions recorded as we increase

sampling effort (Fig. 2, and ‘Data availability’ below). We

can obtain an Interaction Accumulation Curve (IAC)

analogous to a Species Curve (SAC; see Supporting Infor-

mation in the online data availability repository): the

observed number of distinct pairwise interactions in a sur-

vey or collection as a function of the accumulated number

of observations or samples (Colwell 2009).

Empirical data on forbidden links

Adjacency matrices are frequently sparse; that is, they are

densely populated with zeroes, with a fraction of them

being structural (unobservable interactions; Bascompte &

Jordano 2014). Thus, it would be a serious interpretation

error to attribute the sparseness of adjacency matrices for

bipartite networks to just the result of undersampling. The

actual typology of link types in ecological interaction net-

works is thus more complex than just the two categories of

Table 1. A taxonomy of link types for ecological interactions (Olesen et al. 2011)

Link type Formulation Definition

Potential links Imax ¼ AobsPobs Size of observed network matrix, that is maximum number of potentially

observable interactions; Aobs and Pobs, numbers of interacting animal and

plant species, respectively. These might be below the real numbers of

animal and plant species, Aest and Pest

Observed links Iobs Total number of observed links in the network given a sufficient sampling

effort. Number of ones in the adjacency matrix

True links Iest Total number of links in the network given a sufficient sampling effort;

expected for the augmented AestPest matrix

Unobserved links UL ¼ Imax � Iobs Number of zeroes in the adjacency matrix

True unobserved links UL� ¼ Imax � Iobs Number of zeroes in the augmented adjacency matrix that, eventually,

includes unobserved species

Forbidden links FL Number of links, which remain unobserved because of linkage constraints,

irrespectively of sufficient sampling effort

Observed Missing links ML ¼ AobsPobs � Iobs � FL Number of links, which may exist in nature but need more sampling effort

and/or additional sampling methods to be observed

True Missing links ML� ¼ AestPest � Iest � FL Number of links, which may exist in nature but need more sampling effort

and/or additional sampling methods to be observed. Augments ML for the

AestPest matrix.

Aobs, number of animal species; Pobs, number of plant species; Iobs, number of observed links; FL, number of forbidden links; and ML,

number of missing links. As natural scientists, our ultimate goal is to eliminate ML from the equation FL = AP �I� ML, which probably

is not feasible given logistic sampling limitations. When we, during our study, estimate ML to be negligible, we cease observing and

estimate I and FL.
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observed and unobserved interactions (Table 1). Unob-

served interactions are represented by zeroes and belong to

two categories. Missing interactions may actually exist but

require additional sampling or a variety of methods to be

observed. Forbidden links, on the other hand, arise due to

biological constraints limiting interactions and remain

unobservable in nature, irrespectively of sampling effort

(Table 1). Forbidden links FL may actually account for a

relatively large fraction of unobserved interactions UL

when sampling taxonomically restricted subnetworks

(e.g. plant–hummingbird pollination networks; Table 1).

Phenological uncoupling is also prevalent in most net-

works and may add up to explain c. 25–40% of the forbid-

den links, especially in highly seasonal habitats, and up to

20% when estimated relative to the total number of unob-

served interactions (Table 2). In any case, we might expect

that a fraction of the missing links ML would be eventu-

ally explained by further biological reasons, depending on

Fig. 2. Sampling species interactions in natural communities. Suppose an assemblage with A = 3 animal species (red, species 1–3 with

three, two and one individuals, respectively) and P = 3 plant species (green, species a–c with three individuals each) (coloured balls), sam-

pled with increasing effort in steps 1–6 (panels). In Step 1, we record a total of three interactions (black lines) for animal species 1 and

plant species a and b, represented as two distinct pairwise interactions: 1�a and 1�b. As we advance our sampling (panels 1–6, illustrat-
ing, e.g. additional sampling days), we record new distinct interactions. Note that we actually sample and record interactions among indi-

viduals, yet we pool the data across species to get a species by species interaction matrix. Few network analyses have been carried out on

individual data (e.g. Dupont et al. 2014). Above and below each panel are the cumulative number of distinct species and interactions

sampled, so that panel 6 illustrates the final network.

Table 2. Frequencies of different type of forbidden links in natural plant–animal interaction assemblages

Pollination Seed dispersal

Link type Zackenberg Grundvad Arima Valley Sta. Virginia Hato Rat�on Nava Correhuelas

Imax 1891 646 522 423 320 900

I 384 (0�2031) 212 (0�3282) 185 (0�3544) 86 (0�2033) 151 (0�4719) 181 (0�2011)
UL 1507 (0�7969) 434 (0�6718) 337 (0�6456) 337 (0�7967) 169 (0�5281) 719 (0�7989)
FL 530 (0�3517) 107 (0�2465) 218 (0�6469) 260 (0�7715) 118 (0�6982) 320 (0�4451)
FLP 530 (1�0000) 94 (0�8785) . . . (. . .) 120 (0�4615) 67 (0�5678) 195 (0�6094)
FLS . . . (. . .) 8 (0�0748) 30 (0�1376) 140 (0�5385) 31 (0�2627) 46 (0�1438)
FLA . . . (. . .) 5 (0�0467) 150 (0�6881)* . . . (. . .) 20 (0�1695) 79 (0�2469)
FLO . . . (. . .) . . . (. . .) 38 (0�1743)† . . . (. . .) . . . (. . .) . . . (. . .)
ML 977 (0�6483) 327 (0�7535) 119 (0�3531) 77 (0�2285) 51 (0�3018) 399 (0�5549)

Dots indicate no data available for the FL type.

AP, maximum potential links, Imax; I, number of observed links; UL, number of unobserved links; FL, number of forbidden links; FLP,

phenology constraints; FLS, size restrictions; FLA, accessibility constraints; FLO, other types of restrictions; ML, unknown causes (missing

links). Relative frequencies (in parentheses) calculated over Imax for I and UL; those for FL, and ML, over UL; for all forbidden links

types (FLP, FLS, FLA, FLO), calculated over FL. Data for Hato Rat�on and Nava Correhuelas include interactions with bird and mammal

frugivores. References: Snow & Snow (1972), Olesen et al. (2008), Jordano, V�azquez & Bascompte (2009), Olesen et al. (2011), Vizentin-

Bugoni, Maruyama & Sazima (2014) and J.M. Olesen & J. Myrthue, unpublished.

*Lack of accessibility due to habitat uncoupling, that is, canopy-foraging species vs. understory species.

†Colour restrictions, and reward per flower too small relative to the size of the bird.
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the knowledge of natural details of the particular systems.

Our goal as naturalists would be to reduce the fraction of

UL which remain as missing links; to this end, we might

search for additional biological constraints or increase

sampling effort. For instance, habitat use patterns by hum-

mingbirds in the Arima Valley network (Table 2; Snow &

Snow 1972) impose a marked pattern of microhabitat mis-

matches causing up to 44�5% of the forbidden links. A

myriad of biological causes beyond those included as FL

in Table 1 may contribute explanations for UL: limits of

colour perception, presence of secondary metabolites in

fruit pulp and leaves, toxins and combinations of

monosaccharides in nectar, etc. For example, aside from

FL, some pairwise interactions may simply have an asymp-

totically zero probability of interspecific encounter between

the partner species, if they are very rare. However, it is sur-

prising that just the limited set of forbidden link types con-

sidered in Table 1 explain between 24�6% and 77�2% of

the unobserved links. Notably, the Arima Valley, Santa

Virg�ınia and Hato Rat�on networks have >60% of the

unobserved links explained, which might be related to the

fact that they are subnetworks (Arima Valley, Santa

Virg�ınia) or relatively small networks (Hato Rat�on). All

these mean that empirical networks may have sizable frac-

tions of structural zeroes. Ignoring this biological fact may

contribute to wrongly inferring undersampling of interac-

tions in real-world assemblages.

To sum up, two elements of inference are required in the

analysis of unobserved interactions in ecological interac-

tion networks: first, detailed natural history information

on the participant species that allows the inference of bio-

logical constraints imposing forbidden links, so that struc-

tural zeroes can be identified in the adjacency matrix;

secondly, a critical analysis of sampling robustness and a

robust estimate of the actual fraction of missing links, M,

resulting in a robust estimate of I. In the next sections, we

explore these elements of inference, using IACs as analogs

to SACs to assess the robustness of interaction sampling.

Assessing sampling effort when recording
interactions: asymptotic diversity estimates

A plot of the cumulative number of species recorded, Sn,

as a function of some measure of sampling effort (say, n

samples taken) yields the species accumulation curve

(SAC) or collector’s curve (Colwell & Coddington 1994).

Similarly, interaction accumulation curves (IAC), analo-

gous to SACs (Gotelli & Colwell 2001; Chao 2006; Hortal,

Borges & Gaspar 2006; Colwell 2013), can be used to

assess the robustness of interactions sampling for plant–
animal community datasets (Jordano 1987; Jordano,

V�azquez & Bascompte 2009; Olesen et al. 2011; Chacoff

et al. 2012).

The basic method to estimate sampling effort and explic-

itly show the analogues with rarefaction analysis in biodi-

versity research is to vectorize the interaction matrix AP

so that we get a vector of all the potential pairwise

interactions (Imax, Table 1) that can occur in the observed

assemblage with Aobs animal species and Pobs plant species.

The new ‘species’ we aim to sample are the pairwise inter-

actions (Table 3), as previously discussed. In general, if we

have A = 1 . . . i , animal species and P = 1 . . . j plant spe-

cies (assuming a complete list of species in the assemblage),

we will have a vector of ‘new’ species to sample:

A1P1; A1P2; . . .A2P1; A2P2; . . .AiPj. We can represent the

successive samples where we can potentially get records of

these interactions in a matrix with the vectorized interac-

tion matrix and columns representing the successive sam-

ples we take (Table 3). This is simply a vectorized version

of the interaction matrix D. This is analogous to a biodi-

versity sampling matrix with species as rows and sampling

units (e.g. quadrats) as columns (Jordano, V�azquez & Bas-

compte 2009). The package ESTIMATES (Colwell 2013)

includes a complete set of functions for estimating the

mean IAC and its unconditional standard deviation from

random permutations of the data, or subsampling without

replacement (Gotelli & Colwell 2001); it further reports

asymptotic estimators for the expected number of distinct

pairwise interactions included in a given reference sample

of interaction records (see also the SPECACCUM function in

library VEGAN of the R Package; Jordano, V�azquez & Bas-

compte 2009; R Development Core Team 2010; Olesen

et al. 2011). In particular, we may take advantage of repli-

cated incidence data, as it takes account of heterogeneity

among samples (days, censuses, etc.; R. K. Colwell, pers.

comm.; see also Colwell, Mao & Chang 2004; Colwell,

Dunn & Harris 2012; Chao et al. 2014). Future theoretical

work will be needed to formally assess the similarities and

differences between the species vs. interactions sampling

approaches and developing biologically meaningful null

models of expected interaction richness with added sam-

pling effort.

Diversity-accumulation analysis (Magurran 1988; Hor-

tal, Borges & Gaspar 2006) comes up immediately with

this type of data set. This procedure plots the accumula-

tion curve for the expected number of distinct pairwise

interactions recorded with increasing sampling effort (Jor-

dano, V�azquez & Bascompte 2009; Olesen et al. 2011).

Asymptotic estimates of interaction richness and its associ-

ated standard errors and confidence intervals can thus be

obtained (Hortal, Borges & Gaspar 2006; see Table 4 and

Data availability). The characteristic feature of interaction

data sets is that, due to forbidden links, a number of

pairwise interactions among the Imax number specified in

the D adjacency matrix cannot be recorded, irrespective of

sampling effort.

We may expect undersampling specially in moderate to

large-sized networks with multiple modules (i.e. species

subsets requiring different sampling strategies; Jordano

1987; Olesen et al. 2011; Chacoff et al. 2012); adequate

sampling may be feasible when interaction subwebs are

studied (Olesen et al. 2011; Vizentin-Bugoni, Maruyama &

Sazima 2014), typically with more homogeneous subsets of

species (e.g. bumblebee-pollinated flowers).

© 2016 The Author. Functional Ecology © 2016 British Ecological Society, Functional Ecology, 30, 1883–1893

Sampling networks 1889



Mixture models incorporating detectabilities have been

proposed to effectively account for rare species (Mao &

Colwell 2005). In an analogous line, mixture models could

be extended to samples of pairwise interactions, also with

specific detectability values. These detection rate/odds

could be variable among groups of interactions, depending

on their specific detectability. For example, detectability of

flower–pollinator interactions involving bumblebees could

have a higher detectability than flower–pollinator pairwise

interactions involving, say, nitidulid beetles. These more

homogeneous groupings of pairwise interactions within a

network define modules (Bascompte & Jordano 2014), so

we might expect that interactions of a given module (e.g.

plants and their hummingbird pollinators; Fig. 1a) may

share similar detectability values, in an analogous way to

species groups receiving homogeneous detectability values

in mixture models (Mao & Colwell 2005). In its simplest

form, this would result in a sample with multiple pairwise

interactions detected, in which the number of interaction

events recorded for each distinct interaction found in the

sample is recorded (i.e. a column vector in Table 3, corre-

sponding to, say, a sampling day). The number of interac-

tions recorded for the ith pairwise interaction (i.e. AiPj in

Table 3), Yi could be treated as a Poisson random variable

with a mean parameter ki, its detection rate. Mixture mod-

els (Mao & Colwell 2005) include estimates for abundance-

based data (their analogs in interaction sampling would be

weighted data), where Yi is a Poisson random variable

with detection rate ki. This is combined with the incidence-

based model, where Yi is a binomial random variable

(their analogous in interaction sampling would be pres-

ence/absence records of interactions) with detection odds

ki. Let T be the number of samples in an incidence-based

data set. A Poisson/binomial density can be written as

(Mao & Colwell 2005):

gðy; kÞ ¼
ky

y!ek
½1�

T
y

� �
ky

ð1þkÞT ½2�

8<
: ; eqn 1

where [1] corresponds to a weighted network, and [2] to a

qualitative network.

The detection rates ki depend on the relative abundances

/i of the interactions, the probability of a pairwise interac-

tion being detected when it is present, and the sample size

(the number of interactions recorded), which, in turn, is a

function of the sampling effort. Unfortunately, no specific

sampling model has been developed along these lines for

species interactions and their characteristic features. For

example, a complication factor might be that interaction

abundances, /i, in real assemblages are a function of the

abundances of interacting species that determine interspe-

cific encounter rates; yet they also depend on biological

factors that ultimately determine if the interaction occurs

when the partner species are present. For example, ki
should be set to zero for all FL. In its simplest form, /i

could be estimated from just the product of partner species

abundances, an approach recently used as a null model to

Table 3. A vectorized interaction matrix corresponding to the sampling shown in Fig. 2. All the possible distinct pairwise interactions

(cells of the adjacency matrix) between animal species (A) 1, 2 and 3 and plant species (P) a, b and c can be potentially recorded in any of

the six sampling periods (panels in Fig. 1). For each sampling period, N is the cumulative number of records and I is the cumulative num-

ber of distinct pairwise interactions recorded (1s in the binary adjacency matrix)

Interaction Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

1–a 2 2 2 3 3 5

1–b 1 2 2 3 4 4

1–c 0 0 1 2 2 2

2–a 0 1 2 2 3 3

2–b 0 0 0 0 0 2

2–c 0 0 0 0 0 0

3–a 0 0 0 0 0 0

3–b 0 0 1 1 1 2

3–c 0 0 0 0 1 2

N 3 5 8 11 14 20

I 2 3 5 5 6 7

Table 4. Sampling statistics for three plant–animal interaction net-

works (Olesen et al. 2011). Symbols as in Table 1; N, number of

records; Chao1 and ACE are asymptotic estimators for the number

of distinct pairwise interactions I (Hortal, Borges & Gaspar 2006),

and their standard errors; C, sample coverage for rare interactions

(Chao & Jost 2012). Scaled asymptotic estimators and their confi-

dence intervals (CI) were calculated by weighting Chao1 and ACE

with the observed frequencies of forbidden links. Data for Hato

Rat�on and Nava Correhuelas include only plant–bird interactions

Hato Rat�on Nava Correhuelas Zackenberg

A 17 33 65

P 16 25 31

Imax 272 825 1891

N 3340 8378 1245

I 151 181 268

Chao1 263�1 � 70�9 231�4 � 14�2 509�6 � 54�7
ACE 240�3 � 8�9 241�3 � 7�9 566�1 � 14�8
% unobserved* 8�33 15�38 47�80

*Estimated with library Jade (R Development Core Team 2010;

Chao et al. 2015).
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assess the role of biological constraints in generating for-

bidden links and explaining interaction patterns (Vizentin-

Bugoni, Maruyama & Sazima 2014). Yet more complex

models (e.g. Wells & O’Hara 2012) should incorporate not

only interspecific encounter probabilities, but also interac-

tion detectabilities, phenotypic matching and incidence of

forbidden links. Mixture models are certainly complex and

for most situations of evaluating sampling effort better

alternatives include the simpler incidence-based rarefaction

and extrapolation (Colwell, Dunn & Harris 2012; Chao

et al. 2014).

The real missing links

Given that a fraction of unobserved interactions can be

accounted for by forbidden links, what about the remain-

ing missing interactions? We have already discussed that

some of these could still be related to unaccounted con-

straints, and still others would be certainly attributable to

insufficient sampling. Would this always be the case? A

crucial ecological aspect limiting interactions within multi-

specific assemblages of distinct taxonomic relatedness

(Fig. 2) is the probability of interspecific encounter,that is

the probability that two individuals of the partner species

actually encounter each other in nature.

Given log-normally distributed abundances of the two

species groups, the expected probabilities of interspecific

encounter (PIE) would be simply the product of the two

lognormal distributions. Thus, we might expect that for

very low PIE values, pairwise interactions would be either

extremely difficult to sample, or simply do not occur in

nature. Consider the Nava de las Correhuelas interaction

web (NCH, Tables 2 and 4), with A = 36, P = 25, I = 181,

and almost half of the unobserved interactions not

accounted for by forbidden links, thus M = 53�1% (Jor-

dano, V�azquez & Bascompte 2009). A sizable fraction of

these possible but missing links would be simply not occur-

ring in nature, most likely due to extremely low PIE, in

fact asymptotically zero. Given the vectorized list of pair-

wise interactions for NCH, I computed the PIE values for

each one by multiplying element-wise the two species abun-

dance distributions. The PIEmax = 0�0597, being a neutral

estimate, based on the assumption that interactions occur

in proportion to the species-specific local abundances.

With PIEmedian\1�4 10�4, we may safely expect (note the

quantile estimate Q75% ¼ 3�27 10�4) that a sizable fraction

of these missing interactions may not occur according to

this neutral expectation (Jordano 1987; Olesen et al. 2011;

neutral forbidden links, sensu Canard et al. 2012).

When we consider the vectorized interaction matrix,

enumerating all pairwise interactions for the AP combina-

tions, the expected probabilities of finding a given interac-

tion can be estimated with a Good-Turing approximation

(Good 1953). The technique developed by Alan Turing

and I.J. Good with applications to linguistics and word

analysis (Gale & Sampson 1995) has been recently

extended in novel ways for ecological analyses (Chao et al.

2015). In our present context, it estimates the probability

of recording an interaction of a hitherto unseen pair of

partners, given a set of past records of interactions

between other species pairs. Let a sample of N interactions

so that nr distinct pairwise interactions have exactly r

records. All Good-Turing estimators obtain the underlying

frequencies of events as:

PðXÞ ¼ ðNX þ 1Þ
T

1� Eð1Þ
T

� �
; eqn 2

where X is the pairwise interaction, NX is the number of

times interaction X is recorded, T is the sample size (num-

ber of distinct interactions recorded), and E(1) is an esti-

mate of how many different interactions were recorded

exactly once. Strictly speaking eqn 1 gives the probability

that the next interaction type recorded will be X, after

sampling a given assemblage of interacting species. In

other words, we scale down the maximum-likelihood esti-

mator n
T by a factor of 1�Eð1Þ

T . This reduces all the probabili-

ties for interactions we have recorded and makes room for

interactions we haven’t seen. If we sum over the interac-

tions we have seen, then the sum of P(X) is 1� 1�Eð1Þ
T .

Because probabilities sum to one, we have the left-over

probability of Pnew ¼ Eð1Þ
T of seeing something new, where

new means that we sample a new pairwise interaction.

Discussion

Recent work has inferred that most data available for

interaction networks are incomplete due to undersampling,

resulting in a variety of biased parameters and network

patterns (Chacoff et al. 2012). It is important to note,

however, that in practice, most surveyed networks to date

have been subnets of much larger networks. This is also

true for protein interaction, gene regulation and metabolic

networks, where only a subset of the molecular entities in

a cell have been sampled (Stumpf, Wiuf & May 2005).

Despite recent attempts to document whole ecosystem

meta-networks (Pocock, Evans & Memmott 2012), it is

likely that most ecological interaction networks will illus-

trate just major ecosystem compartments. Due to their

high generalization, high temporal and spatial turnover,

and high complexity of association patterns, adequate

sampling of ecological interaction networks is challenging

and requires extremely large sampling effort. Undersam-

pling of ecological networks may originate from the analy-

sis of assemblage subsets (e.g. taxonomically or

functionally defined), and/or from logistically limited sam-

pling effort. It is extremely hard to robustly sample the set

of biotic interactions even for relatively simple, species-

poor assemblages; thus, we need to assess how robust is

the characterization of the adjacency matrix D. Concluding
that an ecological network data set is undersampled just

by its sparseness would be unrealistic. The reason stems

from a biological fact: a sizeable fraction of the maximum,

potential links that can be recorded among two distinct

sets of species is simply unobservable, irrespective of
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sampling effort (Jordano 1987). In addition, sampling

effort needs to be explicitly gauged because of its potential

influence on parameter estimates for the network.

Missing links are a characteristic feature of all plant–an-
imal interaction networks and likely pervade other ecologi-

cal interactions. Important natural history details explain a

fraction of them, resulting in unrealizable interactions (i.e.

forbidden interactions) that define structural zeroes in the

interaction matrices and contribute to their extreme

sparseness. Sampling interactions is a way to monitor bio-

diversity beyond the simple enumeration of component

species and to develop efficient and robust inventories of

functional interactions. Yet no sampling theory for inter-

actions is available. Focusing just on the realized interac-

tions or treating missing interactions as the expected

unique result of sampling bias would miss important com-

ponents to understand how all sorts of interactions coe-

volve within complex webs of interdependence among

species.

Contrary to species inventories, a sizable fraction of

non-observed pairwise interactions cannot be sampled, due

to biological constraints that forbid their occurrence.

Moreover, recent implementations of inference methods

for unobserved species (Chao et al. 2015) or for individ-

ual-based data (Wells & O’Hara 2012; also see Bartomeus

et al. 2016) can be combined with the forbidden link

approach. They do not account either for the existence of

these ecological constraints, but can help in estimating

their relative importance, simply by the difference between

the asymptotic estimate of interaction richness in a robustly

sampled assemblage and the maximum richness Imax of

interactions.

Ecological interactions provide the wireframe supporting

the lives of species, and they also embed crucial ecosystem

functions which are fundamental for supporting the Earth

system. We still have a limited knowledge of the biodiver-

sity of ecological interactions, and they are being lost (ex-

tinct) at a very fast pace, frequently preceding species

extinctions (Valiente-Banuet et al. 2014). We urgently need

robust techniques to assess the completeness of ecological

interactions networks because this knowledge will allow

the identification of the minimal components of their eco-

logical complexity that need to be restored to rebuild func-

tional ecosystems after perturbations.
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