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In natural communities, species and their interactions are often
organized as nonrandom networks, showing distinct and repeated
complex patterns. A prevalent, but poorly explored pattern is
ecological modularity, with weakly interlinked subsets of species
(modules), which, however, internally consist of strongly con-
nected species. The importance of modularity has been discussed
for a long time, but no consensus on its prevalence in ecological
networks has yet been reached. Progress is hampered by inade-
quate methods and a lack of large datasets. We analyzed 51
pollination networks including almost 10,000 species and 20,000
links and tested for modularity by using a recently developed
simulated annealing algorithm. All networks with >150 plant and
pollinator species were modular, whereas networks with <50
species were never modular. Both module number and size in-
creased with species number. Each module includes one or a few
species groups with convergent trait sets that may be considered
as coevolutionary units. Species played different roles with respect
to modularity. However, only 15% of all species were structurally
important to their network. They were either hubs (i.e., highly
linked species within their own module), connectors linking dif-
ferent modules, or both. If these key species go extinct, modules
and networks may break apart and initiate cascades of extinction.
Thus, species serving as hubs and connectors should receive high
conservation priorities.

coevolution � compartment � module � nestedness � species role

B iodiversity encompasses not just species but also interactions
among species. Within habitats, species and their interac-

tions assemble into large, complex ecological networks. Such
networks are rich in structural heterogeneity (1). Understanding
network structure and its underlying causes are essential parts of
any study of biodiversity and its responses to disturbances, yet it
is a conceptual and methodological challenge to address these
problems in highly diversified communities with thousands of
interactions.

Moving through an ecological network of species and their
connecting links, one traverses a heterogeneous universe of
link-dense and -sparse areas. Link-dense regions are termed
compartments (2) or, here, modules (3), whereas link-sparse
regions demarcate their boundaries. Species within a module are
linked more tightly together than they are to species in other
modules. The extent to which species interactions are organized
into modules is termed the modularity of the network. Modu-
larity may reflect habitat heterogeneity, divergent selection
regimes, and phylogenetic clustering of closely related species (4,
5), leading to nonrandom patterns of interaction and ultimately
contributing to the complexity of ecological networks. Modules
with their tightly linked species may even be the long-sought key
units of coevolution, in which reciprocal selection leads to trait
convergence in unrelated species (6). However, modularity has
been notoriously difficult to demonstrate either because of its
rarity or because of a lack of sufficiently strong module-detecting
algorithms (1).

In ecology, Pimm and Lawton (4) presaged recent method-
ological developments by constructing a modularity statistic,
which they compared with a distribution of randomly generated
webs. Later, Raffaelli and Hall (7) used the distribution of a
trophic similarity index between species pairs to look for mod-

ules in an estuary web. Dicks et al. (8), adopting the latter method
(7), analyzed two pollination networks and found that they were
modular. Today, strong modularity-detecting algorithms are
used outside ecology, e.g., in social sciences (9), information
theory (10), and network studies of airlines and biochemistry
(11–13). Recently, one of these algorithms (14) was used to
detect modularity in five food webs (15). We used an algorithm,
here termed SA (11–13), which is based on simulated annealing
[see supporting information (SI) Materials and Methods for a
review of different methods] in a search for modules in polli-
nation networks. Together with other properties of such mutu-
alistic networks, e.g., nestedness and asymmetry (16–20), mod-
ularity is expected to be an essential ingredient of network
complexity. Thus, modularity may play a critical role in both the
functioning of these networks, e.g., to their stability (21, 22) and
in the potential for coevolution of plant and animal species (6).
An identification of modules can tell us what highly connected
groups of species look like and perhaps also at what scale
coevolution is taking place. This may ultimately assist us in the
maintenance of biodiversity by preserving key groups of taxa
playing a fundamental role to network persistence.

A long-lasting tenet in mutualistic plant–animal interaction
studies is the concept of syndromes (23, 24), i.e., that species
converge on correlated suites of traits shaped by similar inter-
action patterns. Such a process may result in a heterogeneous
web of interactions, with taxonomically or functionally related
taxa packed into distinct modules. Understanding how species
interact and evolve at the modular level may thus be a key to an
understanding of trait evolution. Many pollination studies im-
plicitly assume modularity by focusing on subwebs of interacting
species sharing a syndrome (e.g., hummingbirds and their f low-
ers; ref. 25). Thus, a stronger, more explicit focus on modules in
mutualistic networks as study objects may open up routes to a
broader study of functional diversity and coevolutionary units.

Here, we focus on the modularity of entire pollination net-
works, i.e., all interacting species within an area are included.
Our aims are (i) to estimate the level of modularity in pollination
networks, (ii) to identify different types of modules in networks,
and (iii) to classify species into different functional roles with
respect to their position within and among modules.

Results
For each pollination network in the dataset, we ran the modu-
larity-detecting algorithm SA (see Materials and Methods). It
produced a modularity index M, which was a measure of the
degree to which the network was organized into clearly delimited
modules. The algorithm also provided (i) the significance level
of M of the real network by comparing its value to that of
similar-sized random networks, (ii) the number of modules per
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network, and (iii) the content of species of each module (see
Materials and Methods). In total, 51 networks were analyzed, and
29, or 57%, were significantly modular, i.e., they had a modu-
larity index M significantly higher than that of random networks
(see SI Table 1). Mean M � SD was 0.52 � 0.071 (n � 29
networks). All networks of �150 species were modular and all
�50 species were nonmodular. Thus, modular networks encom-
passed by far most of the species and links in our sample (8,233
species and 16,799 links, or 85%).

Our subsequent analysis included only the 29 significantly
modular networks. These networks had, on average, 8.8 � 3.7
modules—with a maximum of 19 modules for the Amami Islands
(26) and a minimum of five for a temperate forest meadow (27)
and heathland (Y.L.D., unpublished work). Modularity M was
independent of network size S, i.e., total number of species of
pollinators A, and plants P (n � 29 networks: F1,27 � 0.0003, P �
0.99), whereas, number of modules in a network NM, and mean
module size SM, i.e., number of species per module, both
increased with S (n � 29: F1,27 � 9.9, P � 0.004; and F1,27 � 45.5,
P � 0.0001, respectively).

Most links in a network were among species within the same
module (on average 60% of all links I in a network). Thus, mean
connectance CM, within a module (number of observed links/
number of possible links in the module, excluding links to other
modules), became very high (42 � 28%), whereas mean con-

nectance C (�100I/(AP)), for the total networks was much lower
(7 � 4%).

All 51 networks were also tested for nestedness, i.e., a widespread
pattern where specialists interact with a subset of the species that
the more generalized species interact with (16). All networks,
except five small ones, were significantly nested (see SI Table 1).
Levels of nestedness N and modularity M were uncorrelated [n �
29 networks: F1,27 � 2.96, P � 0.10, negative trend; in this analysis,
we corrected for among-network variation in S and I by using
relative nestedness (N � Nrandom)/Nrandom and relative modularity
(M � Mrandom)/Mrandom, where Nrandom and Mrandom were average
nestedness and average modularity, respectively, of the random
runs]. A nested matrix thus appeared to be built on modules
assembled by interactions that connected them; largely generalist
species (Fig. 1A) were involved in these interactions. In Fig. 1 A and
B, an example of a real network is shown in both its nested and
modular matrix version, and in Fig. 1C, its modular structure is
depicted as a graph. The nested pattern in Fig. 1A resulted from the
assembly of distinct modules (nonred colors in Fig. 1B) ‘‘glued’’
together by interactions among modules (red cells).

The 29 modular networks consisted of 254 modules. Individual
modules differed in size and shape because of variation in species
number SM (� AM � PM, i.e., the sum of pollinator and plant
species in a module) and species ratio AM/PM. On average, �SD,
a module contained 32 � 34 species, namely, 26 pollinator
species and six plant species, i.e., AM/PM � 4.2. Thirty-six (14%)

Fig. 1. Pollination network structure and species roles. The example is from the Andes (28). (A) Nested matrix version of the network, with plant species in
columns and pollinator species in rows sorted from the upper left corner according to descending species degree. Colored cells are links between species. (B)
Modular matrix version of the same network as in A; species are now sorted according to their modular affinity (order of modules is arbitrary). Red cells are species
links gluing the seven modules together into a coherent network, and nonred cells are links within modules (links of the different modules can be identified
in A by their color). (C) Graph of modules. Module links are weighted by both the number of species links between modules and number of species within modules;
vignettes show dominant pollinator and flower type: black module: Diptera species and mainly white flowers; purple module: small-to-medium-sized beetles,
flies, an ant, and small, white/yellow flowers; blue module: butterflies and one plant species, Oxalis species; green module: bees, birds, and large, mainly yellow
flowers with a closed morphology; yellow module: large flies and small, yellow umbellifer flowers; orange module: butterflies, a large fly, and white/yellow/
pink/purple flowers; and gray module: large flies and mainly small, white flowers. (D) zc-plot of species roles with three module hubs and one connector, but
no network hub. In A and B, species acting as module hubs and connectors are shown as blue and green dots, respectively, just outside the matrix border. Notice
that the connector species in B (green dot) has �50% of its links outside its own module.
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of all modules were isolated species groups without any links to
the remaining network. Twenty-one of these isolates were small
1:1 modules, consisting of only one pollinator species interacting
with one plant species. Twenty-nine (11%) of all modules were
structurally very asymmetrical or star-shaped, consisting of one
generalist hub species, most often a plant species, linked to a
swarm of peripheral pollinator species (range 3–51) linked only
to the hub. The hub, however, had links to other modules. The
remaining 189 (74%) of the modules varied a lot in size and
shape (for examples of module types, see Fig. 1B). Individual
modules might be dominated by a few species, taxonomically or
functionally delimited; for example, in the subandine scrub (28),
there was an 8:18-module (i.e., a module of eight pollinators
interacting with 18 plants), which was dominated by three or
more floral oil-collecting bees, namely, Centris spp. and Tapi-
notaspis species, together with five or more floral oil-producing
plants, namely, Sisyrinchium species and Calceolaria species. In
a Jamaican network (29), one of the seven modules was a 5:3
module consisting of four birds (Streamertail Hummingbird,
Bananaquit, Orangequit, and Jamaican Blackbird), one Anolis
lizard, and three plant species with red/purple-colored flowers.

Topologically, species played different roles in the networks.
The algorithm SA described the role of each species by its
within-module degree z, i.e., its standardized number of links to
other species in the same module, and its among-module con-
nectivity c, i.e., the level to which the species was linked to other
modules (see Materials and Methods). For each species in a
network, SA calculated these parameter values (11–13). Species
with both a low z and a low c were peripheral species or
specialists, i.e., they had only a few links and almost always only
to species within their module. Species with either a high value
of z or c were generalists. These included module hubs, i.e.,
highly connected species linked to many species within their own
module (high z, low c), and connectors linking several modules
(low z, high c). Species with both a high z and a high c were
network hubs or super generalists, acting as both connectors and
module hubs. An example of this mapping of species roles is
given for a single network in Fig. 1D. The scatter of zc-roles of
all species from all modular networks is shown in Fig. 2.

Eighty-five percent of all species were peripherals with most of
their links inside their module (72% of these even had a c � 0,
i.e., they had no links at all outside their own module) and 15%
were generalists, i.e., 3% were module hubs, 11% connectors,
and only 1% network hubs. The strongest module hubs were
plants, like umbellifers (e.g., refs. 26, 30, and 31). Connectors
were mainly beetles, f lies, and small-to-medium-sized bees (e.g.,
refs. 32–34). Most network hub pollinators were social bees,
especially Apis spp. (31, 35) and Bombus spp. (27) or large
solitary bees, e.g., Xylocopa sp. (34) and a few Diptera species
(Fig. 2).

Discussion
Above a size of 50 species, all pollination networks got
significantly nested (16) and some also became modular, and
passing 150 species, they were always both significantly nested
and modular (see SI Table 1). Thus, within the observed size
range of pollination networks (S � 16–952 species), testing
solely for one kind of network pattern is too simplified (5);
both sides of the coin are needed. This lack of correlation
between nestedness and modularity suggests that modularity
dictates the basic building blocks of networks. These building
blocks or their species can then be combined in different
contrasting ways, e.g., maximizing either nestedness or mod-
ularity. The nested and modular matrix versions are two
complementary, yet uncorrelated, analytical steps toward a
more profound understanding of network complexity and its
causes. In the nested matrix version, species are ranked
according to their number of links, whereas in the modular
version, they become grouped according to their linkage
affinity to other species. This insight, however, could only be
gained with the recent appearance of strong algorithms (e.g.,
11, 14, 36), allowing a robust identification of modules and a
testing of modularity and nestedness. The presence of nest-
edness in pollination networks tells us that their structure is
more than just a string of distinct modules. The link-dense core
in the nested version (upper left matrix corner in Fig. 1 A) is
partly composed of between-module links (red cells in Fig. 1 A
and B), i.e., links connecting generalist species. The SA

Fig. 2. Distribution of pollinator and plant species according to their network role. Each dot represents a species; large pane includes all 8,233 species from
the 29 modular networks. Small panes show role distribution of selected groups of species.
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algorithm identifies these generalists (15% of our species
sample) by their high z- and/or c-scores. Generalists ‘‘glue’’
peripheral species together into modules, but also modules
together into networks and, in this way, blur module bound-
aries. The key innovative insight obtained from our analysis is
that all larger pollination networks are modular and that
modularity is complementary to nestedness.

The smallest networks were nonmodular. The reason for this
may be a lack of module-detecting power of the algorithm SA
when network size decreases. However, the reason may also be
related to the connectance of the networks. In general, if
connectance in pollination networks increases, then network size
decreases (37). If connectance increases, the size of the core of
links between generalized species also increases, which may
reduce the level of modularity.

Modularity is expected to increase with link specificity (5). It
may, for example, be stronger in insect herbivory networks than
in pollination and seed-dispersal networks, characterized by low
interaction specificity, and in traditional food webs. In an
analysis of a herbivory network, f lower head-breeding Tephriti-
dae flies and their Asteraceae host species were sorted into six
modules (38). Using SA on this network, we detected seven
modules and a high modularity (116 species, M � 0.63), higher
than in most pollination networks (M� � 0.52; see SI Table 1). In
this herbivory network, generalists, especially connectors, played
a more inferior role as network ‘‘glue’’ (6% of all species) than
in pollination networks (15% of all species). Trophic specializa-
tion was suggested to cause modularity (38). If so, modularity
may be driven by evolution among plant species in various key
traits, e.g., chemicals and flower head morphology that ‘‘filters
out’’ subsets of species from the overall pattern of species
interactions. Reanalyzing a tropical host–parasitoid network also
with an expected high link specificity (39), we found an even
stronger modularity (104 species, M � 0.67, 12 modules).
Networks of domatia-living ants and their plants are also ex-
pected to show high link specificity. Fonseca and Ganade (40)
identified seven modules and strong modularity in a South
American plant–ant network. Three modules were even isolated
from the main network. Using SA, we confirmed their results (41
species, M � 0.58). These ‘‘long-term intimate mutualisms’’ (41)
strengthen modularity (38, 40, 42), but are rarely seen in
networks of interactions among free-living species such as plants
and their pollinators or seed dispersers (6).

Many argue for a synthesis of community ecology and evolu-
tionary biology (e.g., refs. 43 and 44). Modularity and nestedness
may be the stepping-stone, bridging evolutionary biology and not
just community ecology, but also network ecology (45). This may
intensify cross-disciplinary work in a research area poor in
synthetic field studies (ref. 43; however, see ref. 46). Identifica-
tion of modules and their component species may be the missing
protocol bullets making such studies feasible. If trait evolution
within a focal species has only one-to-one species links as its
drivers, the network context becomes redundant. However,
because such pairwise one-to-one links are extremely rare
among free-living mutualists (6, 41) and extremely rare in
pollination networks (this study, ref. 47), reciprocal selection is
believed to be multispecific, i.e., involving a module, a couple
of tightly linked modules, or maybe even an entire small,
(non)modular network (6, 44). Within individual modules, con-
nectance was 42%, i.e., almost half of all pollinators and plants
were likely to interact directly (Fig. 1B). Thus, the multispecies
selection regime in a module must be intense.

Small groups of strongly interacting species are favorite study
objects in pollination biology, but without authors explicitly
stating that these are modules, e.g., bumblebees and their plants
(48) and hummingbirds and heliconias (25, 49). Convergence
toward syndromes, e.g., the bird–flower pollination syndrome, in
a pollination network may promote modularity (6, 50). Thus, an

identification of modules may bring us closer to an understand-
ing of the basic coevolutionary units that structure complex webs
of interaction. This conclusion is strongly supported by the
‘‘biological content’’ of modules. Some of those identified in this
study contained a set of species with convergent traits related to
their pollination biology, e.g., corolla color or reward type, or
they were closely related taxonomically (Fig. 1C). Thus, our
study provides a straightforward relationship between a network
property and its ecological equivalence expressed as life-history
attributes of the component species. The study of modularity
may serve to bridge two major coevolutionary research agendas,
namely that focusing on small groups of strongly interacting
species (6) and that focusing on entire networks (16, 17, 19). In
this way, modularity may shed light on how small groups of
species scale up to form complex networks of interactions.

The demonstration of modularity in pollination networks has
far-reaching conservational implications. Disturbances are ex-
pected to spread more slowly through a modular than a non-
modular structure. The identification of the role of species in
modular networks may also have valuable bearings to conser-
vation. The network consequences of species extinctions depend
on species role, e.g., an extinction of a module hub may cause its
module to fragment with no or minor cascading impact on other
modules (38), whereas the extinction of connectors may cause
the entire network to fragment into isolated modules but with
minor impact on the internal structure of individual modules.
Conversely, alien invaders of a network, often being highly
generalized (51), may cause fusion of modules with profound,
long-term effects on network functioning and selection regime.

The omnipresence of modularity and other structural prop-
erties, e.g., nestedness, in large pollination networks may change
our view on the structuring of biodiversity. Our study shows that
modules are small blocks of species, candidating as manageable
study objects, and that their study may bridge evolutionary and
functional ecology.

Materials and Methods
Database. Pollination networks are a well studied type of net-
works (e.g., refs. 8, 16–20, and 52–54). We analyzed 51 total
pollination networks encompassing almost 10,000 species of
plants and flower-visiting animals and 20,000 links, using our
own data and data extracted from the literature (see SI Table 1).
‘‘Total’’ does not mean a complete sampling of species and links
but only that all plants and flower-visitors observed were in-
cluded (37). All f lower-visiting animals were regarded as polli-
nators, which, of course, was not necessarily true. Thus, a link is
a record of an animal species visiting the flowers of a plant
species. The number of links a species has to other species is its
degree k. A pollination network is two-modal, i.e., it includes
only links connecting plant and animal communities, and it is
represented as an adjacency matrix (Fig. 1 A and B; ref. 52),
whose elements consist of presence and absence of links (colored
and uncolored cells, respectively). Most data are sampled over
an extensive period, most often one season, and the sample of
study sites covers a wide geographical range and many habitat
types (see Table 1). We are aware of the methodological
heterogeneity of our database. However, it is more homoge-
neous than most earlier databases in ecology; for example,
almost all taxa were resolved to species level, and links were
scored in a similar way, albeit, by many researchers. Data on link
strength was not included because such information was lacking
in approximately half of the networks and because the module-
detecting algorithm (SA) operates only with binary (presence/
absence) data (see SI Appendix).

Modularity Analysis. A modular network consists of intercon-
nected modules. Each module is a group of species, which are
more closely connected to each other than to species in other
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modules. To estimate the level of modularity and number of
modules in our sample of networks, we used an algorithm (here
termed SA) provided by R. Guimerà (for details see refs. 11–13,
and see SI Appendix for arguments for choice of algorithm). The
algorithm, which is based on simulated annealing, identifies
modules, whose nodes have the majority of their links inside their
own module with an accuracy of 90% (11). Almost all species are
unambiguously assigned to a module, except extreme connector
species, i.e., species linking equally several modules. For each
network, SA calculates an index of modularity M:

M � �
s�1

NM � I s

I
� � k s

2I�
2� , [1]

where NM is number of modules in the network, Is is number of links
between all species within module s, I is number of links in the
network, and ks is the sum of degrees of all species in s. M values
belong to the interval [0; �1/NM]. Basically, M is a measure of the
extent to which species have more links within their modules than
expected if linkage is random. For each empirical network, we ran
an SA-analysis of 100 random networks with the same species
degree distribution as the empirical one, and examined whether the
empirical network was significantly more modular than the random
ones (11). In its calculation of M for a network, the algorithm
excludes small isolated modules without any links to the main
network. However, we consider these isolates as part of the
network. They were identified manually.

Each species was assigned a role by SA according to its
topological properties (11). The role of a species is defined by its
position compared with other species in its own module and how
well it connects to species in other modules. Thus, the role of a
species i can be characterized by its standardized within-module
degree z:

z �
kis � k� s

SDks
, [2]

and its among-module connectivity, c (identical to ref. 11’s partic-
ipation coefficient P), i.e., how i is positioned with respect to all
modules:

c � 1 � �
t�1

NM � k it

k i
� 2

, [3]

where kis is number of links of i to other species in its own module
s, k� s and SDks are average and standard deviation of within-
module k of all species in s, ki is degree of species i, and kit is

number of links from i to species in module t (including i’s own
module). If i has all its links within its own module, c � 0; and
if these are distributed evenly among modules, c 3 1. z and c
values are produced by SA, and together they define the roles of
species and their position in the zc-parameter space (Fig. 1D).
Modifying the criteria of Guimerà and Amaral (11) (who
distinguished among seven roles), we sorted all species into
peripherals, connectors, module hubs, and network hubs (black,
green, blue, and red dots, respectively, in Fig. 2). The latter three
are termed generalists. A peripheral species has both a low z �
2.5 and a low c � 0.62. It has a few links inside its own module
and rarely any to other modules. A connector species has a low
z � 2.5 and a high c � 0.62, and it ‘‘glues’’ modules together and
is thus important to network coherence. A module hub has a high
z � 2.5 and a low c � 0.62 and is important to the coherence of
its own module. A network hub has both a high z � 2.5 and a high
c � 0.62 and is thus important to the coherence of both the
network and its own module (see Figs. 1D and 2 and refs. 11–13).
By using z � 2.5 as a cutoff value (11), almost no species with 1–2
links to other species in its own module entered the module hub
quadrant (z � 2.5, c � 0.62). The behavior of c was explored by
varying the number of links of i to other species in its module
(internal links), the number of links of i to other species outside
its module (external links), and the number of other modules to
which i was linked. With this approach, species with many
external links compared with internal links and with links to
many modules had c � 0.62. In consequence, the cutoff values
derived from (11) get a specific topological meaning.

Using the software ANINHADO (36), we estimated level of
nestedness for each network, N � (100 � T)/100 (16), where T
is ‘‘matrix temperature.’’ The null model used to assess signifi-
cance of N was originally provided by ref. 16 and implemented
as Ce (36) and the probability that cell aij has a link is (ai/C �
aj/R)/2 (ai, number of links in row i; aj, number of links in column
j; C, number of columns; and R, number of rows).
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SI Appendix 

Methods to Assess Modularity in Complex Networks. This appendix summarizes salient methods 
(not exhaustive) and examples to analyze modularity and compartmentalization in complex 
networks. There is a vast amount of literature on this topic, and the material included here focuses 
mainly on ecological applications. 

Our article uses the modularity analysis method presented by Guimerà and Amaral [Guimerà R, 
Amaral LAN (2005) J Stat Mechan, article no. P02001, pp 1-13.] As described in Methods in the 
main paper, the algorithm maximizes modularity (M) using simulated annealing (SA) as a way to 
simplify the search of combinations. This software is for presence-absence data (now also available 
for quantitative data in one-mode networks but not available for quantitative data in two-mode 
networks; R. Guimerà, personal communication). This algorithm is time-consuming, but can handle 
large datasets. Danon et al. [Danon L, Díaz-Guilera A, Duch J, Arenas A (2005) J Stat Mechan 
Theory Exp, P09008] compare different methods to calculate modularity and conclude that the 
simulated annealing algorithm is the best available. During the review stage of our manuscript, 
Guimerà et al. [Guimerà R, Sales-Pardo M, Amaral LAN (2007) Phys Rev E 76: 036102] have 
provided an extension of this algorithm for two-mode presence-absence networks. Because our 
plant-animal networks are an example of two-mode networks, one could conclude that this most 
recent is the algorithm (let's call it SA-2 and refer to the previous one for one-mode networks as SA-
1) we should use. However, this decision depends on the sort of question one addresses. R. Guimerà 
(personal communication) provided the following argument: 

First, if one only focuses on one of the interacting communities (animals or plants) the partitions 
provided by both algorithms are quite similar. Actually, about 75% of the nodes are classified in the 
same "module" by both algorithms (this computation actually requires to map each module in SA-1 
to the best matching module, Guimerà et al. (2007). However, SA-1 works with the hypothesis (null 
model implicit in the definition of modularity) that every node can be connected to every other node, 
which we know is not true in our networks. It does not invalidate the result but one has to keep this 
in mind. R. Guimerà (personal communication) does not expect the differences between the two 
versions of the algorithm to be large. 

Second, the two algorithms give slightly different information. SA-1 looks for the most significantly 
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dense regions (modules) in the network, whereas SA-2 looks for groups of animals (plants) that 
share the most significantly high number of interactions with the same plants (animals), even when 
the plants (animals), themselves, belong to different modules. Thus, in a way, the interpretation of 
SA-2 is harder because groups of plants do not need to correspond to groups of animals. Thus SA-1 
is even more interesting in our case because the resulting modules have a precise biological meaning 
as potential coevolutionary vortices [sensu Thompson JN (2005) The Geographic Mosaic of 
Coevolution (Univ of Chicago Press, Chicago)] or as cores of mutualistic networks [sensu 
Bascompte J, Jordano P, Meliám CH, Olesen JM (2003) Proc Natl Acad Sci USA 100:

]. Also SA-1 is a better choice within a coevolutionary perspective because of the 
following: SA-2 creates groups of plants somehow independently of the animal groups; i.e., an 
animal group does not necessarily contain the species that interact with a particular plant group, just 
animals with a similar pattern of interactions regardless of where the species they interact with are 
classified in the other set. We are more interested in the coevolutionary units, namely identifying 
groups of tightly interrelated plants and animals. This is also closer to the concept of pollination 
syndromes. 

The above refers to the modularity analysis based on simulated annealing (SA). There are many 
other modularity analyses in the literature. Here, we provide a very brief presentation of some of 
them. 

1. Pimm and Lawton (1980). This is one of the earliest attempts to characterize food web 
compartments. It is based on a randomization approach in which a compartmentalization 
statistic (which appears to be high in compartmented systems) is tested against a null 
distribution. Species in modules are identified by cluster analysis. It is based on presence-
absence data.  

1. Pimm SL, Lawton JH (1980) J Anim Ecol 49:879-898. 

2. Raffaelli and Hall (1992). The principle of this method is to analyze pairwise trophic similarity 
by using the Jaccard similarity index. This is not a statistical test, because compartmentalization of a 
network is not compared with that of randomly assembled networks as in the previous methods. 
However, it does give an indication of how compartmentalized a network is. It cannot be tested 
statistically because the similarity measures are non-independent. It is based on presence-absence 
data. Species in modules are identified by cluster analysis.  

1. Raffaelli D, Hall SJ (1992) J Anim Ecol 61:551-560. 

2. Dicks LV, Corbet SA, Pywell RF (2002) J Anim Ecol 71:32-43. 

3. Fonseca and Ganade (1996). The log likelihood ratio test statistic is tested by Monte Carlo 
simulations (random matrices in which row and column totals are fixed). The dataset shows no 
compartments when using the method of Raffaelli and Hall (1992), because the system has very low 
connectance (and hence many species pairs have 0 similarity). 

1. Fonseca CR, Ganade G (1996) J Anim Ecol 65:339-347. 

4. Connectivity Correlation [e.g., Melián and Bascompte (2002)]. Connectivity correlation is the 
correlation between the number of interactions of a species and the average number of interactions of 
the species it interacts with. This measure was first used in the Internet and protein networks, and 
later on applied to food webs. A significant negative connectivity correlation characterizes a 
compartmentalized system. This would correspond to a case where a highly connected node is 
connected to specialist nodes. Connectivity correlation appears to be a measure of network 
transitivity (Girvan and Newman 2002, see below) more than modularity, although the two concepts 
are related. The advantage of this method is that it is based on a simple statistical procedure (a 
simple correlation) and does not rely on complex software. However, it also provides a simple 
macroscopic index and does not allow identifying the possible modules. 

1. Maslov S, Sneppen K (2002) Science 296:910-913.

9383-9387
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2. Melian CJ, Bascompte J (2002) Ecol Lett 5:705-708. 

5. Girvan and Newman (2002). This method is based on an analysis of betweenness. It uses 
centrality to find compartment boundaries. The algorithm was designed with a sparse network in 
mind and may not perform well in a dense network (e.g., food webs). 

1. Girvan M, Newman MEJ (2002) Proc Natl Acad Sci USA 99: . 

2. Newman MEJ (2004) Eur Phys J B 38:321-330. 

3. Newman MEJ (2004) Phys Rev E69:066133. 

6. Zhou (2003). A new method of hierarchical clustering, using a new dissimilarity measure between 
vertices to identify "communities" (compartments). Modules can be identified at several different 
levels of resolution. However, there is no statistical test of which level is most highly significant. 

1. Zhou H (2003) Phys Rev E 67:061901. 

7. Krause et al. (2003). This paper is the most convincing evidence of compartments in food webs 
and illustrates how these network methods can advance our knowledge of ecological questions. 
Modules are detected using a software first developed by sociologists (Frank 1995), Kliquefinder. 
The number of modules is chosen based on optimization of a criterion, and tested against a null 
model of no modularity. Odds ratio (interactions within and between modules) is tested by Monte 
Carlo simulation. This procedure is quite equivalent to the method used in the present paper; both 
were independently created by two different research fields (sociology and physics). 

1. Frank KA (1995) Social Netw 17:27-56. 

2. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Nature 426:282-285. 

8. K-means [Bach and Jordan (2003)] 

The K-means is an ordination-based procedure to find groups of components in a multivariate 
structure. Bach and Jordan discuss a class of algorithms for independent component analysis (ICA) 
that uses contrast functions based on canonical correlations. 

1. Bach FR, Jordan MI (2002) J Machine Learn Res 3:1-48. 

9. Information-theory based algorithms. This approach uses recent developments in information 
theory to illustrate and validate an information-theoretic algorithm for module discovery and the 
resulting measure of network modularity. This measure is an order parameter (a dimensionless 
number between 0 and 1). Network modularity is quantified by comparison with Monte Carlo 
generated Erdös-like modular networks. The network information bottleneck (NIB) algorithm is 
applied to a number of real world networks, such as social networks of coauthorship. 

1. Ziv E, Middendorf M, Wiggins CH (2000) Phys Rev E 7:046117. 

 
 
 
 
Table 1. Modularity of pollination networks 

7821-7826

No. Habitat, country (ref) A P S I N  M  NM
 

1 Mixed forest, Japan 
(1) 

840 112 952 1876 0.99 * 0.54 * 10 
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2 Phrygana, Greece (2) 666 131 797 2933 0.96 * 0.44 * 6 

3 Beech forest, Japan 
(3) 

679 91 770 1193 0.99 * 0.63 * 13 

4 Scrub/meadow/forest, 
Amami Isles, Japan 
(4) 

619 107 726 1109 0.98 * 0.64 * 19 

5 Ruderal area, Spain 
(5) 

454 31 485 966 0.87 * 0.51 * 8 

6 Subalpine 
forest/meadow, Japan 
(6) 

356 90 446 865 0.97 * 0.54 * 10 

7 Urban area, Japan (7) 314 113 427 769 0.98 * 0.55 * 17 

8 Grassland, Japan (8) 295 99 394 590 0.98 * 0.64 * 17 

9 Forest/grassland, 
USA (9) 

275 96 371 923 0.98 * 0.42 * 12 

10 Mosaic heathland, 
Denmark (YL 
Dupont unpubl.) 

236 33 269 706 0.93 * 0.40 * 5 

11 Forest meadow, 
Denmark (10) 

225 37 262 590 0.94 * 0.44 * 5 

12 Marsh, Japan (11) 187 63 250 430 0.96 * 0.55 * 10 

13 Continuous 
heathland, Denmark 
(YL Dupont unpubl.) 

186 23 209 468 0.93 * 0.42 * 6 

14 Scrub, Spain (12) 179 26 205 412 0.91 * 0.47 * 7 

15 Grassland, Cass, New 
Zealand (13) 

153 45 198 403 0.93 * 0.48 * 7 

16 Subandean scrub 
 m, 

Chile (14) 
2200-2600

101 84 185 361 0.96 * 0.51 * 11 

17 Subalpine grassland, 
Craigieburn, New 
Zealand (13) 

130 52 182 383 0.94 * 0.49 * 7 

18 Subalpine 
grassland/scrub, 
Mount Cook, New 
Zealand (13) 

102 31 133 250 0.94 * 0.49 * 6 

19 Tundra, Canada (15) 91 20 111 190 0.95 * 0.46 * 6 

20 Cushion zone 
 m, 

Chile (14) 
2700-3100

64 43 107 196 0.91 * 0.52 * 6 

21 Forest 1, Argentina 
(16, 17) 

90 14 104 164 0.91 * 0.48 * 7 

22 Coastal scrub, 
Jamaica (18) 

36 61 97 178 0.93 * 0.49 * 7 

23 Scrub RB, Argentina 72 23 95 125 0.91 * 0.56 * 10 
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(19) 

24 Open forest, 
Venezuela (20) 

46 47 93 151 0.87 * 0.59 * 9 

25 Subalpine grassland, 
Arthur's Pass, New 
Zealand (13) 

68 22 90 147 0.74 * 0.56 * 7 

26 Lowland forest, 
Jamaica (21) 

45 29 74 122 0.91 * 0.51 * 7 

27 Semi-desert gorge, 
Tenerife, Spain (22) 

51 17 68 130 0.82 * 0.46 * 6 

28 Subnival zone 
 m, 

Chile (14) 
3200-3600

26 41 67 86 0.93 * 0.59 * 7 

29 Scrub LD, Argentina 
(19) 

45 21 66 83 0.89 * 0.62 * 6 

30 Subarctic rocky 
slope, Sweden (23) 

118 24 142 242 0.86 * 0.51 ns  

31 Scrub/snow gum 
forest, Australia (24) 

81 36 117 253 0.90 * 0.43 ns  

32 Forest, Canada (25) 102 12 114 167 0.93 * 0.47 ns  

33 Tundra, Canada (26) 81 29 110 179 0.95 * 0.48 ns  

34 Wasteground, 
Denmark (27) 

82 26 108 249 0.83 * 0.41 ns  

35 Tundra, Greenland 
(28) 

76 31 107 456 0.74 * 0.25 ns  

36 Meadow, England 
(29) 

79 25 104 299 0.92 * 0.33 ns  

37 Laurel forest, 
Gomera, Spain ( JM 
Olesen & S Forfang 
unpubl.) 

55 29 84 145 0.95 * 0.46 ns  

38 Lowland forest, 
Dominica (21) 

41 29 70 151 0.88 * 0.40 ns  

39 Forest meadow, 
Denmark (30) 

44 16 60 278 0.78 * 0.21 ns  

40 Tundra, Greenland 
(31) 

39 15 54 92 0.81 * 0.40 ns  

41 Beach-oak forest, 
Denmark (27) 

42 8 50 79 0.59 ns 0.44 ns  

42 Coastal bog, 
Denmark (27) 

40 10 50 72 0.63 ns 0.49 ns  

43 Alpine desert, 
Tenerife, Spain (32) 

38 11 49 108 0.67 * 0.35 ns  

44 Semi-desert slope, 
Tenerife, Spain (22) 

35 14 49 86 0.84 * 0.43 ns  
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For networks 1-29, M was significant (P < 0.05), and for 30-51 nonsignificant. Each of these two 
groups was sorted by descending S. A, number of animal species; P, number of plant species; S = A 
+P; I, number of interactions recorded; M, modularity; N, nestedness; *, P < 0.05; ns, 
nonsignificance; NM, number of modules. 

1 Inoue T, Kato M, Kakutani T, Suka T, Itino T (1990) Contr Biol Lab Kyoto Univ 27:377-
463. 

2 Petanidou T (1991) PhD thesis (Aristotelian University, Thessaloniki, Greece). 

3 Kato M, Kakutani T, Inoue T, Itino T (1990) Contr Biol Lab Kyoto Univ 27:309-375. 

4 Kato M (2000) Contr Biol Lab Kyoto Univ 29:157-252. 

5 González-Álvaro V (2004) PhD thesis (Univ of Castilla-La Mancha, Toledo, Spain). 

6 Kato M, Matsumoto M, Kato T (1993) Contr Biol Lab Kyoto Univ 28:119-172. 

7 Kakutani T, Inoue T, Kato M, Ichihashi H (1990) Contr Biol Lab Kyoto Univ 27:465-521. 

8 Yamazaki K, Kato M (2003) Contr Biol Lab Kyoto Univ 29:255-318. 

9 Clements RE, Long FL (1923) Experimental Pollination. An Outline of the Ecology of 
Flowers and Insects (Carnegie Institute of Washington, Washington DC). 

10. Bek S (2006) MSc thesis (Univ of Aarhus, Aarhus, Denmark).  
11. Kato M, Miura R (1996) Contr Biol Lab Kyoto Univ 29:1-48. 

12 Herrera J (1988) J Ecol 76:274-287. 

13 Primack RB (1983) NZ J Bot 21:317-333. 

14 Arroyo MTK, Primack R, Armesto J (1982) Am J Bot 69:82-97. 

15 Kevan PG (1970) PhD thesis (University of Alberta, Edmonton, AL, Canada). 

16 Vázquez DP, Simberloff D (2002) Am Nat 159:606-623. 

17 Vázquez DP (2002) PhD thesis (Univ of Tennessee, Knoxville, TN). 

45 Tundra, Greenland 
(33) 

26 17 43 63 0.85 * 0.46 ns  

46 Deciduous forest, 
USA (34) 

33 7 40 65 0.87 * 0.33 ns  

47 Lowland, Galápagos 
(35) 

22 10 32 27 0.70 * 0.50 ns  

48 Tundra valley, 
Canada (36) 

18 11 29 27 0.78 ns 0.36 ns  

49 Coralline island, 
Mauritius (37) 

13 14 27 52 0.87 * 0.33 ns  

50 Coastal cliff, Azores, 
Portugal (37) 

12 10 22 30 0.67 ns 0.44 ns  

51 Lava desert, 
Galápagos (38) 

6 10 16 16 0.96 ns 0.35 ns  

Page 6 of 8The modularity of pollination networks -- Olesen et al., 10.1073/pnas.0706375104 -- ...

05-12-2007http://www.pnas.org/cgi/content/full/0706375104/DC1



18 Percival M (1974) Biotropica 6:104-129. 

19 Medan D, Montaldo NH, Devoto M, Mantese A, Vasellati V, Bartoloni NH (2002) Arc 
Antarc Alp Res 34:233-241. 

20 Ramirez N (1989) Biotropica 21:319-330. 

21 Ingversen TT (2006) MSc thesis (Univ of Aarhus, Aarhus, Denmark). 

22 Stald L (2003) MSc thesis (Univ of Aarhus, Aarhus, Denmark). 

23 Elberling H, Olesen JM (1999) Ecography 22:314-323. 

24 Inouye DW, Pyke GH (1988) Austr J Ecol 13:191-210. 

25 Helenurm K, Barrett SCH (1987) Can J Bot 65:2047-2056. 

26 Hocking B (1968) Oikos 19:359-388. 

27 Montero AC (2005) MSc thesis (Univ of Aarhus, Aarhus, Denmark).  

28 Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Ecology, in press. 

29 Memmott J (1999) Ecol Lett 2:276-280. 

30 Bundgaard M (2003) MSc thesis (Univ of Aarhus, Aarhus, Denmark).  

31 Witt P (1998) BSc thesis (Univ of Aarhus, Aarhus, Denmark). 

32 Dupont YL, Hansen DM, Olesen JM (2003) Ecography 26:301-310. 

33 Lundgren R, Olesen JM (2005) Arc Antarc Alp Res 37:514-520. 

34 Schemske D, Willson M, Melampy M, Miller L, Verner L, Schemske K, Best L (1978) 
Ecology 59:351-366. 

35 McMullen CK (1993) Pan-Pac Ent 69:95-106. 

36 Mosquin T, Martin JE (1967) Can Field Nat 81:201-205. 

37 Olesen JM, Eskildsen LI, Venkatasamy S (2002) Div Distr 8:181-192. 

38 Philipp M, Böcher J, Siegismund HR, Nielsen LR (2006) Ecography 29:531-540. 

 
 
 
 

This Article

Abstract 

Services

Email this article to a colleague 

Alert me to new issues of the journal 

Request Copyright Permission 

Citing Articles

Citing Articles via CrossRef 

Page 7 of 8The modularity of pollination networks -- Olesen et al., 10.1073/pnas.0706375104 -- ...

05-12-2007http://www.pnas.org/cgi/content/full/0706375104/DC1


